These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28235888)

  • 1. Adaptation of
    Chebaro Y; Lorenz M; Fa A; Zheng R; Gustin M
    Genetics; 2017 May; 206(1):151-162. PubMed ID: 28235888
    [No Abstract]   [Full Text] [Related]  

  • 2. Factors supporting cysteine tolerance and sulfite production in Candida albicans.
    Hennicke F; Grumbt M; Lermann U; Ueberschaar N; Palige K; Böttcher B; Jacobsen ID; Staib C; Morschhäuser J; Monod M; Hube B; Hertweck C; Staib P
    Eukaryot Cell; 2013 Apr; 12(4):604-13. PubMed ID: 23417561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans.
    Chiranand W; McLeod I; Zhou H; Lynn JJ; Vega LA; Myers H; Yates JR; Lorenz MC; Gustin MC
    Eukaryot Cell; 2008 Feb; 7(2):268-78. PubMed ID: 18083829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergence of the yeast transcription factor FZF1 affects sulfite resistance.
    Engle EK; Fay JC
    PLoS Genet; 2012; 8(6):e1002763. PubMed ID: 22719269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.
    Park H; Bakalinsky AT
    Yeast; 2000 Jul; 16(10):881-8. PubMed ID: 10870099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression.
    Iijima K; Ogata T
    J Appl Microbiol; 2010 Dec; 109(6):1906-13. PubMed ID: 20681972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two alleles of the sulfite resistance genes are differentially regulated in Saccharomyces cerevisiae.
    Yuasa N; Nakagawa Y; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1584-8. PubMed ID: 16116289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.
    Liu XZ; Sang M; Zhang XA; Zhang TK; Zhang HY; He X; Li SX; Sun XD; Zhang ZM
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28449102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.
    Avram D; Bakalinsky AT
    J Bacteriol; 1997 Sep; 179(18):5971-4. PubMed ID: 9294463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast.
    Nardi T; Corich V; Giacomini A; Blondin B
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1686-1696. PubMed ID: 20203053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy is required for sulfur dioxide tolerance in Saccharomyces cerevisiae.
    Valero E; Tronchoni J; Morales P; Gonzalez R
    Microb Biotechnol; 2020 Mar; 13(2):599-604. PubMed ID: 31638329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae.
    Avram D; Bakalinsky AT
    Genetics; 1996 Oct; 144(2):511-21. PubMed ID: 8889516
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations.
    Macías LG; Flores MG; Adam AC; Rodríguez ME; Querol A; Barrio E; Lopes CA; Pérez-Torrado R
    PLoS Genet; 2021 Nov; 17(11):e1009872. PubMed ID: 34762651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations.
    Crosato G; Nadai C; Carlot M; Garavaglia J; Ziegler DR; Rossi RC; De Castilhos J; Campanaro S; Treu L; Giacomini A; Corich V
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32436567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker.
    Park H; Lopez NI; Bakalinsky AT
    Curr Genet; 1999 Dec; 36(6):339-44. PubMed ID: 10654087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].
    Peng LX; Sun FF; Huang YY; Li ZC
    Yi Chuan; 2013 Nov; 35(11):1317-26. PubMed ID: 24579315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.