These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28235888)

  • 21. Stress-induced gene expression in Candida albicans: absence of a general stress response.
    Enjalbert B; Nantel A; Whiteway M
    Mol Biol Cell; 2003 Apr; 14(4):1460-7. PubMed ID: 12686601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.
    Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M
    J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic Control of Oxidative Stresses by Histone Acetyltransferases in
    Kim J; Park S; Lee JS
    J Microbiol Biotechnol; 2018 Feb; 28(2):181-189. PubMed ID: 29169224
    [No Abstract]   [Full Text] [Related]  

  • 25. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae.
    Park H; Hwang YS
    J Microbiol; 2008 Oct; 46(5):542-8. PubMed ID: 18974956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z; Zhang X; Li H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217845
    [No Abstract]   [Full Text] [Related]  

  • 28. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae.
    Sarver A; DeRisi J
    Mol Biol Cell; 2005 Oct; 16(10):4781-91. PubMed ID: 16014606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
    Román E; Nombela C; Pla J
    Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis.
    Davis D
    Curr Genet; 2003 Oct; 44(1):1-7. PubMed ID: 12819929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional rewiring of fungal galactose-metabolism circuitry.
    Martchenko M; Levitin A; Hogues H; Nantel A; Whiteway M
    Curr Biol; 2007 Jun; 17(12):1007-13. PubMed ID: 17540568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding.
    Avram D; Leid M; Bakalinsky AT
    Yeast; 1999 Apr; 15(6):473-80. PubMed ID: 10234785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.
    Verma-Gaur J; Qu Y; Harrison PF; Lo TL; Quenault T; Dagley MJ; Bellousoff M; Powell DR; Beilharz TH; Traven A
    PLoS Genet; 2015 Oct; 11(10):e1005590. PubMed ID: 26474309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis.
    Rottmann M; Dieter S; Brunner H; Rupp S
    Mol Microbiol; 2003 Feb; 47(4):943-59. PubMed ID: 12581351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducible defense mechanism against nitric oxide in Candida albicans.
    Ullmann BD; Myers H; Chiranand W; Lazzell AL; Zhao Q; Vega LA; Lopez-Ribot JL; Gardner PR; Gustin MC
    Eukaryot Cell; 2004 Jun; 3(3):715-23. PubMed ID: 15189992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper-dependent transcriptional regulation by Candida albicans Mac1p.
    Woodacre A; Mason RP; Jeeves RE; Cashmore AM
    Microbiology (Reading); 2008 May; 154(Pt 5):1502-1512. PubMed ID: 18451059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans.
    Fekete A; Emri T; Gyetvai A; Gazdag Z; Pesti M; Varga Z; Balla J; Cserháti C; Emody L; Gergely L; Pócsi I
    FEMS Yeast Res; 2007 Sep; 7(6):834-47. PubMed ID: 17498215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional expression of the Candida albicans alpha-factor receptor in Saccharomyces cerevisiae.
    Janiak AM; Sargsyan H; Russo J; Naider F; Hauser M; Becker JM
    Fungal Genet Biol; 2005 Apr; 42(4):328-38. PubMed ID: 15749052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.