These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28235888)
41. Mutational analysis of metacaspase CaMca1 and decapping activator Edc3 in the pathogenicity of Candida albicans. Jeong JH; Lee SE; Kim J Fungal Genet Biol; 2016 Dec; 97():18-23. PubMed ID: 27815149 [TBL] [Abstract][Full Text] [Related]
42. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Zhang X; De Micheli M; Coleman ST; Sanglard D; Moye-Rowley WS Mol Microbiol; 2000 May; 36(3):618-29. PubMed ID: 10844651 [TBL] [Abstract][Full Text] [Related]
43. Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae. Gong A; Liu W; Lin Y; Huang L; Xie Z Microbiol Spectr; 2023 Jun; 11(3):e0132623. PubMed ID: 37098949 [TBL] [Abstract][Full Text] [Related]
46. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525 [TBL] [Abstract][Full Text] [Related]
47. CRZ1, a target of the calcineurin pathway in Candida albicans. Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987 [TBL] [Abstract][Full Text] [Related]
48. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans. Chen Y; Yu Q; Wang H; Dong Y; Jia C; Zhang B; Xiao C; Zhang B; Xing L; Li M Fungal Genet Biol; 2016 Oct; 95():1-12. PubMed ID: 27473887 [TBL] [Abstract][Full Text] [Related]
49. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Liu H Int J Med Microbiol; 2002 Oct; 292(5-6):299-311. PubMed ID: 12452278 [TBL] [Abstract][Full Text] [Related]
50. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830 [TBL] [Abstract][Full Text] [Related]
51. Transcriptional rewiring: the proof is in the eating. Rokas A; Hittinger CT Curr Biol; 2007 Aug; 17(16):R626-8. PubMed ID: 17714646 [TBL] [Abstract][Full Text] [Related]
52. Role of the mRNA export factor Sus1 in oxidative stress tolerance in Candida albicans. Xiao C; Yu Q; Zhang B; Li J; Zhang D; Li M Biochem Biophys Res Commun; 2018 Feb; 496(2):253-259. PubMed ID: 29326041 [TBL] [Abstract][Full Text] [Related]
53. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. Mio T; Yamada-Okabe T; Yabe T; Nakajima T; Arisawa M; Yamada-Okabe H J Bacteriol; 1997 Apr; 179(7):2363-72. PubMed ID: 9079924 [TBL] [Abstract][Full Text] [Related]
54. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans. Sellam A; Tebbji F; Whiteway M; Nantel A PLoS One; 2012; 7(8):e43956. PubMed ID: 22952822 [TBL] [Abstract][Full Text] [Related]
55. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans. Ting SY; Ishola OA; Ahmed MA; Tabana YM; Dahham S; Agha MT; Musa SF; Muhammed R; Than LT; Sandai D J Mycol Med; 2017 Mar; 27(1):98-108. PubMed ID: 28041812 [TBL] [Abstract][Full Text] [Related]
56. Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans. Ding X; Yu Q; Xu N; Wang Y; Cheng X; Qian K; Zhao Q; Zhang B; Xing L; Li M Fungal Genet Biol; 2013 Aug; 57():23-32. PubMed ID: 23769872 [TBL] [Abstract][Full Text] [Related]
57. A Ste6p/P-glycoprotein homologue from the asexual yeast Candida albicans transports the a-factor mating pheromone in Saccharomyces cerevisiae. Raymond M; Dignard D; Alarco AM; Mainville N; Magee BB; Thomas DY Mol Microbiol; 1998 Feb; 27(3):587-98. PubMed ID: 9489670 [TBL] [Abstract][Full Text] [Related]
58. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Noble J; Sanchez I; Blondin B Microb Cell Fact; 2015 May; 14():68. PubMed ID: 25947166 [TBL] [Abstract][Full Text] [Related]
59. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation. García MG; O'Connor JE; García LL; Martínez SI; Herrero E; del Castillo Agudo L Yeast; 2001 Mar; 18(4):301-11. PubMed ID: 11223939 [TBL] [Abstract][Full Text] [Related]