BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 28235951)

  • 1. Human airway trypsin-like protease, a serine protease involved in respiratory diseases.
    Menou A; Duitman J; Flajolet P; Sallenave JM; Mailleux AA; Crestani B
    Am J Physiol Lung Cell Mol Physiol; 2017 May; 312(5):L657-L668. PubMed ID: 28235951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsin and trypsin-like proteases in the brain: proteolysis and cellular functions.
    Wang Y; Luo W; Reiser G
    Cell Mol Life Sci; 2008 Jan; 65(2):237-52. PubMed ID: 17965832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of proteolytic activity and serine proteases distribution in plasma from patients with bladder cancer.
    Synelnyk T; Vovk T; Halenova T; Tytarenko V; Raksha N; Savchuk O; Falalyeyeva T; Ostapchenko L; Yakovlev P; Kozyk M; Thorley D; Strubchevska K
    Front Med (Lausanne); 2023; 10():1276882. PubMed ID: 38034543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pharmacological landscape and therapeutic potential of serine hydrolases.
    Bachovchin DA; Cravatt BF
    Nat Rev Drug Discov; 2012 Jan; 11(1):52-68. PubMed ID: 22212679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human airway trypsin-like protease exerts potent, antifibrotic action in pulmonary fibrosis.
    Menou A; Flajolet P; Duitman J; Justet A; Moog S; Jaillet M; Tabèze L; Solhonne B; Garnier M; Mal H; Mordant P; Castier Y; Cazes A; Sallenave JM; Mailleux AA; Crestani B
    FASEB J; 2018 Mar; 32(3):1250-1264. PubMed ID: 29122847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review on serine protease: Key immune manipulator and pathology mediator.
    Patel S
    Allergol Immunopathol (Madr); 2017; 45(6):579-591. PubMed ID: 28236540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - A review of patent literature.
    Murza A; Dion SP; Boudreault PL; Désilets A; Leduc R; Marsault É
    Expert Opin Ther Pat; 2020 Nov; 30(11):807-824. PubMed ID: 32887532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog.
    Lushington GH; Linde A; Melgarejo T
    BioTech (Basel); 2023 Oct; 12(4):. PubMed ID: 37987478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the mechanisms underlying drug-induced cholestatic liver injury: identifying key genes using machine learning techniques on human in vitro data sets.
    Jiang J; van Ertvelde J; Ertaylan G; Peeters R; Jennen D; de Kok TM; Vinken M
    Arch Toxicol; 2023 Nov; 97(11):2969-2981. PubMed ID: 37603094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function.
    Wu Q; Li S; Zhang X; Dong N
    Biomedicines; 2023 Jun; 11(7):. PubMed ID: 37509434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway proteolytic control of pneumococcal competence.
    Echlin H; Iverson A; Sardo U; Rosch JW
    PLoS Pathog; 2023 May; 19(5):e1011421. PubMed ID: 37256908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nafamostat has anti-asthmatic effects associated with suppressed pro-inflammatory gene expression, eosinophil infiltration and airway hyperreactivity.
    Allam VSRR; Waern I; Taha S; Akula S; Wernersson S; Pejler G
    Front Immunol; 2023; 14():1136780. PubMed ID: 37153590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry.
    Sengar A; Cervantes M; Bondalapati ST; Hess T; Kasson PM
    J Virol; 2023 May; 97(5):e0199222. PubMed ID: 37133381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analysis of age-related cognitive decline reveals a novel locus for the attention domain and implicates a COVID-19-related gene for global cognitive function.
    Acharya V; Fan KH; Snitz BE; Ganguli M; DeKosky ST; Lopez OL; Feingold E; Kamboh MI
    Alzheimers Dement; 2023 Nov; 19(11):5010-5022. PubMed ID: 37089073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases.
    Ferguson TEG; Reihill JA; Martin SL; Walker B
    Front Chem; 2022; 10():782608. PubMed ID: 35529696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retracted Article: Knockdown of TMPRSS11D inhibits the proliferation, migration and invasion of cervical cancer cells.
    Yan K; Hu C; Liu C; Chu G; Wang X; Ma S; Li L
    RSC Adv; 2019 Jul; 9(37):21591-21600. PubMed ID: 35521321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development.
    Uprety T; Wang D; Li F
    Arch Virol; 2021 Sep; 166(9):2369-2386. PubMed ID: 34216267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases.
    Carroll EL; Bailo M; Reihill JA; Crilly A; Lockhart JC; Litherland GJ; Lundy FT; McGarvey LP; Hollywood MA; Martin SL
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Crucial Host Factors of SARS-CoV-2.
    Tharappel AM; Samrat SK; Li Z; Li H
    ACS Infect Dis; 2020 Nov; 6(11):2844-2865. PubMed ID: 33112126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated FiO
    Myti D; Gunjak M; Casado F; Khaghani Raziabad S; Nardiello C; Vadász I; Herold S; Pryhuber G; Seeger W; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2020 Oct; 319(4):L670-L674. PubMed ID: 32878480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.