These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28236444)

  • 21. Shoulder and elbow joint angle tracking with inertial sensors.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2635-41. PubMed ID: 22911538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Velocity-dependent changes of rotational axes during the control of unconstrained 3D arm motions depend on initial instruction on limb position.
    Isableu B; Hansen C; Rezzoug N; Gorce P; Pagano CC
    Hum Mov Sci; 2013 Apr; 32(2):290-300. PubMed ID: 23725828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical risk factors identification based on body sensor network combined to videotaping.
    Vignais N; Bernard F; Touvenot G; Sagot JC
    Appl Ergon; 2017 Nov; 65():410-417. PubMed ID: 28528627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint kinematics estimate using wearable inertial and magnetic sensing modules.
    Picerno P; Cereatti A; Cappozzo A
    Gait Posture; 2008 Nov; 28(4):588-95. PubMed ID: 18502130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
    Vargas-Valencia LS; Elias A; Rocon E; Bastos-Filho T; Frizera A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Larue C; Plamondon A
    Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional calibration procedure for 3D knee joint angle description using inertial sensors.
    Favre J; Aissaoui R; Jolles BM; de Guise JA; Aminian K
    J Biomech; 2009 Oct; 42(14):2330-5. PubMed ID: 19665712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices.
    Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A functional axis based upper extremity model and associated calibration procedures.
    MacWilliams BA; Sardelli MC; Tashjian RZ
    Gait Posture; 2010 Feb; 31(2):289-91. PubMed ID: 19944607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upper limb joint angle measurement in occupational health.
    Álvarez D; Alvarez JC; González RC; López AM
    Comput Methods Biomech Biomed Engin; 2016; 19(2):159-70. PubMed ID: 25573165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of magneto-inertial measuring units for measuring hip joint angles.
    Horenstein RE; Lewis CL; Yan S; Halverstadt A; Shefelbine SJ
    J Biomech; 2019 Jun; 91():170-174. PubMed ID: 31147099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olecranon orientation as an indicator of elbow joint angle in the stance phase, and estimation of forelimb posture in extinct quadruped animals.
    Fujiwara S
    J Morphol; 2009 Sep; 270(9):1107-21. PubMed ID: 19378290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of shoulder rotation, upper arm rotation and elbow flexion in a repetitive gripping task.
    Farooq M; Khan AA
    Work; 2012; 43(3):263-78. PubMed ID: 22927602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The accuracy of an external frame using ISB recommended rotation sequence to define shoulder joint angle.
    Xu X; McGorry RW; Lin JH
    Gait Posture; 2014; 39(1):662-8. PubMed ID: 24095266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of digitisation of the humeral epicondyles on quantifying elbow kinematics during cricket bowling.
    Eftaxiopoulou T; Gupte CM; Dear JP; Bull AM
    J Sports Sci; 2013; 31(15):1722-30. PubMed ID: 23879677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of joint center and measurement of finger motion by inertial sensors.
    Kitano K; Ito A; Tsujiuchi N; Wakida S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5668-5671. PubMed ID: 28269541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.
    Bisi MC; Stagni R; Caroselli A; Cappello A
    Med Eng Phys; 2015 Aug; 37(8):813-9. PubMed ID: 26077101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.