These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28237099)

  • 1. Assessment of Glycolytic Flux and Mitochondrial Respiration in the Course of Autophagic Responses.
    Sica V; Bravo-San Pedro JM; Pietrocola F; Izzo V; Maiuri MC; Kroemer G; Galluzzi L
    Methods Enzymol; 2017; 588():155-170. PubMed ID: 28237099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contributions of respiration and glycolysis to extracellular acid production.
    Mookerjee SA; Goncalves RLS; Gerencser AA; Nicholls DG; Brand MD
    Biochim Biophys Acta; 2015 Feb; 1847(2):171-181. PubMed ID: 25449966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes.
    Yan X; Shi ZF; Xu LX; Li JX; Wu M; Wang XX; Jia M; Dong LP; Yang SH; Yuan F
    Biomed Environ Sci; 2017 Jan; 30(1):44-51. PubMed ID: 28245898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis.
    Li R; Jen N; Wu L; Lee J; Fang K; Quigley K; Lee K; Wang S; Zhou B; Vergnes L; Chen YR; Li Z; Reue K; Ann DK; Hsiai TK
    Antioxid Redox Signal; 2015 Nov; 23(15):1207-19. PubMed ID: 26120766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Role of RARĪ² Signaling on Cellular Metabolism in Melanoma Using the Seahorse XF Analyzer.
    Dahl C; Guldberg P; Abildgaard C
    Methods Mol Biol; 2019; 2019():171-180. PubMed ID: 31359396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate.
    Mookerjee SA; Brand MD
    J Vis Exp; 2015 Dec; (106):e53464. PubMed ID: 26709455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organelle-Specific Initiation of Autophagy.
    Sica V; Galluzzi L; Bravo-San Pedro JM; Izzo V; Maiuri MC; Kroemer G
    Mol Cell; 2015 Aug; 59(4):522-39. PubMed ID: 26295960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.
    Lay S; Sanislav O; Annesley SJ; Fisher PR
    Methods Mol Biol; 2016; 1407():41-61. PubMed ID: 27271893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of autophagy by stress-responsive transcription factors.
    Pietrocola F; Izzo V; Niso-Santano M; Vacchelli E; Galluzzi L; Maiuri MC; Kroemer G
    Semin Cancer Biol; 2013 Oct; 23(5):310-22. PubMed ID: 23726895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer.
    Pelgrom LR; van der Ham AJ; Everts B
    Methods Mol Biol; 2016; 1390():273-85. PubMed ID: 26803635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells.
    Zhang J; Zhang Q
    Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.
    Pike Winer LS; Wu M
    PLoS One; 2014; 9(10):e109916. PubMed ID: 25360519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells.
    Jeon JY; Kim SW; Park KC; Yun M
    BMC Cancer; 2015 Sep; 15():623. PubMed ID: 26345371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control of autophagy.
    Galluzzi L; Pietrocola F; Levine B; Kroemer G
    Cell; 2014 Dec; 159(6):1263-76. PubMed ID: 25480292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing Calcium-Stimulated Mitochondrial Bioenergetics Using the Seahorse XF96 Analyzer.
    Wettmarshausen J; Perocchi F
    Methods Mol Biol; 2019; 1925():197-222. PubMed ID: 30674029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of Oxidative Stress: Mitochondrial Function Using the Seahorse System.
    Leung DTH; Chu S
    Methods Mol Biol; 2018; 1710():285-293. PubMed ID: 29197011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of hypoxia-induced metabolic reprogramming.
    Yang C; Jiang L; Zhang H; Shimoda LA; DeBerardinis RJ; Semenza GL
    Methods Enzymol; 2014; 542():425-55. PubMed ID: 24862279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.