These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
722 related articles for article (PubMed ID: 28237749)
1. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
2. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Song Y; Cai H; Yin T; Huo M; Ma P; Zhou J; Lai W Int J Nanomedicine; 2018; 13():1585-1600. PubMed ID: 29588586 [TBL] [Abstract][Full Text] [Related]
3. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
4. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
5. Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy. Yang Y; Li Y; Chen K; Zhang L; Qiao S; Tan G; Chen F; Pan W Int J Nanomedicine; 2020; 15():2885-2902. PubMed ID: 32425522 [TBL] [Abstract][Full Text] [Related]
6. Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. Xia J; Du Y; Huang L; Chaurasiya B; Tu J; Webster TJ; Sun C Nanomedicine; 2018 Apr; 14(3):713-723. PubMed ID: 29317344 [TBL] [Abstract][Full Text] [Related]
7. α-Tocopherol Succinate-Anchored PEGylated Poly(amidoamine) Dendrimer for the Delivery of Paclitaxel: Assessment of in Vitro and in Vivo Therapeutic Efficacy. Bhatt H; Kiran Rompicharla SV; Ghosh B; Biswas S Mol Pharm; 2019 Apr; 16(4):1541-1554. PubMed ID: 30817166 [TBL] [Abstract][Full Text] [Related]
8. Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Hou L; Tian C; Chen D; Yuan Y; Yan Y; Huang Q; Zhang H; Zhang Z Eur J Pharm Sci; 2019 Dec; 140():105071. PubMed ID: 31525433 [TBL] [Abstract][Full Text] [Related]
9. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related]
10. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on α-tocopherol succinate-modified chitosan. Liang N; Sun S; Hong J; Tian J; Fang L; Cui F Drug Deliv; 2016 Oct; 23(8):2651-2660. PubMed ID: 26165423 [TBL] [Abstract][Full Text] [Related]
11. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Chen FQ; Zhang JM; Fang XF; Yu H; Liu YL; Li H; Wang YT; Chen MW Acta Pharmacol Sin; 2017 Jun; 38(6):859-873. PubMed ID: 28260803 [TBL] [Abstract][Full Text] [Related]
12. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Zou L; Liu X; Li J; Li W; Zhang L; Fu C; Zhang J; Gu Z Theranostics; 2021; 11(9):4171-4186. PubMed ID: 33754055 [No Abstract] [Full Text] [Related]
13. Tumor-targeting micelles based on folic acid and α-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Zhang X; Liang N; Gong X; Kawashima Y; Cui F; Sun S Colloids Surf B Biointerfaces; 2019 May; 177():11-18. PubMed ID: 30690425 [TBL] [Abstract][Full Text] [Related]
14. Novel Soluplus(®)-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines. Bernabeu E; Gonzalez L; Cagel M; Gergic EP; Moretton MA; Chiappetta DA Colloids Surf B Biointerfaces; 2016 Apr; 140():403-411. PubMed ID: 26780253 [TBL] [Abstract][Full Text] [Related]
15. Polymeric Micelles Based on Modified Glycol Chitosan for Paclitaxel Delivery: Preparation, Characterization and Evaluation. Liang N; Sun S; Gong X; Li Q; Yan P; Cui F Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29882845 [TBL] [Abstract][Full Text] [Related]
16. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Yin T; Wu Q; Wang L; Yin L; Zhou J; Huo M Mol Pharm; 2015 Aug; 12(8):3020-31. PubMed ID: 26086430 [TBL] [Abstract][Full Text] [Related]
17. Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy. Luo T; Han J; Zhao F; Pan X; Tian B; Ding X; Zhang J Carbohydr Polym; 2019 Jul; 215():8-19. PubMed ID: 30981373 [TBL] [Abstract][Full Text] [Related]
18. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Wang G; Wang Z; Li C; Duan G; Wang K; Li Q; Tao T Biomed Pharmacother; 2018 Oct; 106():275-284. PubMed ID: 29966971 [TBL] [Abstract][Full Text] [Related]
19. Enhanced cytotoxicity of a redox-sensitive hyaluronic acid-based nanomedicine toward different oncocytes via various internalization mechanisms. Du Y; Wang S; Zhang T; He D; Tu J; Shen Y Drug Deliv; 2020 Dec; 27(1):128-136. PubMed ID: 31894722 [TBL] [Abstract][Full Text] [Related]
20. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Bao Y; Guo Y; Zhuang X; Li D; Cheng B; Tan S; Zhang Z Mol Pharm; 2014 Sep; 11(9):3196-209. PubMed ID: 25102234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]