BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28237996)

  • 1. Macromolecular and Elemental Composition Analyses of
    Bang J; Li L; Seong H; Kwon YW; Lee DY; Han NS
    J Microbiol Biotechnol; 2017 May; 27(5):939-942. PubMed ID: 28237996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris.
    Özcan E; Selvi SS; Nikerel E; Teusink B; Toksoy Öner E; Çakır T
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3153-3165. PubMed ID: 30712128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides.
    van Mastrigt O; Egas RA; Abee T; Smid EJ
    Food Microbiol; 2019 Sep; 82():151-159. PubMed ID: 31027769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation.
    Chun BH; Kim KH; Jeon HH; Lee SH; Jeon CO
    Sci Rep; 2017 Sep; 7(1):11504. PubMed ID: 28912444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.
    Jin Q; Li L; Moon JS; Cho SK; Kim YJ; Lee SJ; Han NS
    J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the
    Peng YW; Jin HX
    J Microbiol Biotechnol; 2018 Dec; 28(12):2009-2018. PubMed ID: 30304917
    [No Abstract]   [Full Text] [Related]  

  • 7. Exopolysaccharides Production during the Fermentation of Soybean and Fava Bean Flours by Leuconostoc mesenteroides DSM 20343.
    Xu Y; Coda R; Shi Q; Tuomainen P; Katina K; Tenkanen M
    J Agric Food Chem; 2017 Apr; 65(13):2805-2815. PubMed ID: 28326776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria.
    Koduru L; Kim Y; Bang J; Lakshmanan M; Han NS; Lee DY
    Sci Rep; 2017 Nov; 7(1):15721. PubMed ID: 29147021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Characterization of Kimchi Starters
    Lee KW; Kim GS; Baek AH; Hwang HS; Kwon DY; Kim SG; Lee SY
    J Microbiol Biotechnol; 2020 Jul; 30(7):1060-1066. PubMed ID: 32270659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes.
    Aarnikunnas J; Rönnholm K; Palva A
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):665-71. PubMed ID: 12226722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of
    Yang H; Wu H; Gao L; Jia H; Zhang Y; Cui Z; Li Y
    J Microbiol Biotechnol; 2016 Dec; 26(12):2148-2158. PubMed ID: 27666995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree.
    Di Cagno R; Filannino P; Vincentini O; Lanera A; Cavoski I; Gobbetti M
    Food Microbiol; 2016 Oct; 59():176-89. PubMed ID: 27375258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Characterization of l-Malate Dehydrogenases and the l-Lactate-Biosynthetic Pathway in Leuconostoc mesenteroides ATCC 8293.
    Kim KH; Jia X; Jia B; Jeon CO
    J Agric Food Chem; 2018 Aug; 66(30):8086-8093. PubMed ID: 29998731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the carbohydrate metabolic characteristics of Leuconostoc mesenteroides J18 through metabolite and transcriptome analyses.
    Hye Baek J; Min Han D; Gyu Choi D; Ok Jeon C
    Food Chem; 2024 Mar; 435():137594. PubMed ID: 37804726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.
    Carvalheiro F; Moniz P; Duarte LC; Esteves MP; Gírio FM
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):221-7. PubMed ID: 20820868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter.
    Jeong EJ; Moon DW; Oh JS; Moon JS; Seong H; Kim KY; Han NS
    J Microbiol Biotechnol; 2017 Dec; 27(12):2112-2118. PubMed ID: 29032647
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation.
    Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z
    Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides.
    Yang JJ; Rahim AR; Yang AJ; Chuang TH; Huang CM
    Biochem Biophys Res Commun; 2020 Dec; 533(4):651-656. PubMed ID: 33008603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105.
    Xing H; Du R; Zhao F; Han Y; Xiao H; Zhou Z
    Int J Biol Macromol; 2018 Jun; 112():1208-1216. PubMed ID: 29454055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice.
    Traisaeng S; Batsukh A; Chuang TH; Herr DR; Huang YF; Chimeddorj B; Huang CM
    Sci Rep; 2020 May; 10(1):7928. PubMed ID: 32404878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.