These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28238040)

  • 1. Biocalcite and Carbonic Acid Activators.
    Wang X; Neufurth M; Tolba E; Wang S; Schröder HC; Müller WE
    Prog Mol Subcell Biol; 2017; 55():221-257. PubMed ID: 28238040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2014; 313():27-77. PubMed ID: 25376489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Understanding of the Metazoan Skeletal System, Based on the Initial Discoveries with Siliceous and Calcareous Sponges.
    Müller WEG; Schröder HC; Wang X
    Mar Drugs; 2017 Jun; 15(6):. PubMed ID: 28604622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.
    Wang X; Schröder HC; Müller WE
    Trends Biotechnol; 2014 Sep; 32(9):441-7. PubMed ID: 24908383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation.
    Müller WE; Schröder HC; Schlossmacher U; Grebenjuk VA; Ushijima H; Wang X
    Biomaterials; 2013 Nov; 34(34):8671-80. PubMed ID: 23953824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate.
    Wang X; Schröder HC; Schlossmacher U; Neufurth M; Feng Q; Diehl-Seifert B; Müller WE
    Calcif Tissue Int; 2014 May; 94(5):495-509. PubMed ID: 24374859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonenzymatic Transformation of Amorphous CaCO3 into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo Hydroxyapatite Bone Formation.
    Müller WE; Neufurth M; Huang J; Wang K; Feng Q; Schröder HC; Diehl-Seifert B; Muñoz-Espí R; Wang X
    Chembiochem; 2015 Jun; 16(9):1323-32. PubMed ID: 25871446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone.
    Wang X; Schröder HC; Müller WE
    Beilstein J Nanotechnol; 2014; 5():610-21. PubMed ID: 24991497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.
    Müller WE; Schlossmacher U; Schröder HC; Lieberwirth I; Glasser G; Korzhev M; Neufurth M; Wang X
    Acta Biomater; 2014 Jan; 10(1):450-62. PubMed ID: 23978410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.
    Müller WE; Wang X; Grebenjuk VA; Korzhev M; Wiens M; Schlossmacher U; Schröder HC
    PLoS One; 2012; 7(4):e34617. PubMed ID: 22506035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate incorporation and carbonic anhydrase activity in developing hamster molars in vitro.
    Dogterom AA; Bervoets TJ; Lyaruu DM; Wöltgens JH
    J Biol Buccale; 1983 Mar; 11(1):15-21. PubMed ID: 6406475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans.
    Adeva-Andany MM; Fernández-Fernández C; Sánchez-Bello R; Donapetry-García C; Martínez-Rodríguez J
    Atherosclerosis; 2015 Jul; 241(1):183-91. PubMed ID: 26005791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles.
    Maeshima K; Yoshimoto M
    Enzyme Microb Technol; 2017 Oct; 105():9-17. PubMed ID: 28756864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrases in anthozoan corals-A review.
    Bertucci A; Moya A; Tambutté S; Allemand D; Supuran CT; Zoccola D
    Bioorg Med Chem; 2013 Mar; 21(6):1437-50. PubMed ID: 23199478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions.
    Müller WE; Schröder HC; Tolba E; Diehl-Seifert B; Wang X
    FEBS J; 2016 Jan; 283(1):74-87. PubMed ID: 26453899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes.
    Voigt O; Adamski M; Sluzek K; Adamska M
    BMC Evol Biol; 2014 Nov; 14():230. PubMed ID: 25421146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells.
    Detsch R; Hagmeyer D; Neumann M; Schaefer S; Vortkamp A; Wuelling M; Ziegler G; Epple M
    Acta Biomater; 2010 Aug; 6(8):3223-33. PubMed ID: 20206720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration.
    Müller WE; Tolba E; Schröder HC; Wang X
    Macromol Biosci; 2015 Sep; 15(9):1182-97. PubMed ID: 25982003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonic anhydrase in calcified endoskeleton: novel activity in biocalcification in alcyonarian.
    Rahman MA; Oomori T; Uehara T
    Mar Biotechnol (NY); 2008; 10(1):31-8. PubMed ID: 17896136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable Carbonic Anhydrases in Biotechnological Applications.
    Di Fiore A; Alterio V; Monti SM; De Simone G; D'Ambrosio K
    Int J Mol Sci; 2015 Jul; 16(7):15456-80. PubMed ID: 26184158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.