These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28238042)

  • 1. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.
    Bhushan A; Peters EE; Piel J
    Prog Mol Subcell Biol; 2017; 55():291-314. PubMed ID: 28238042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria.
    He F; Mai LH; Gardères J; Hussain A; Erakovic Haber V; Bourguet-Kondracki ML
    Prog Mol Subcell Biol; 2017; 55():35-89. PubMed ID: 28238035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and biotechnological potential of the sponge-associated microbial consortia.
    Wang G
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):545-51. PubMed ID: 16761166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges.
    Lackner G; Peters EE; Helfrich EJ; Piel J
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):E347-E356. PubMed ID: 28049838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity and biotechnological potential of microorganisms associated with marine sponges.
    Fuerst JA
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7331-47. PubMed ID: 25005058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters.
    Bohlin L; Cárdenas P; Backlund A; Göransson U
    Prog Mol Subcell Biol; 2017; 55():1-34. PubMed ID: 28238034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.
    Nakashima Y; Egami Y; Kimura M; Wakimoto T; Abe I
    PLoS One; 2016; 11(10):e0164468. PubMed ID: 27732651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-mining the microbial treasures of the ocean: new natural products.
    Imhoff JF; Labes A; Wiese J
    Biotechnol Adv; 2011; 29(5):468-82. PubMed ID: 21419836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017.
    Cheng MM; Tang XL; Sun YT; Song DY; Cheng YJ; Liu H; Li PL; Li GQ
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring marine resources for bioactive compounds.
    Kiuru P; DʼAuria MV; Muller CD; Tammela P; Vuorela H; Yli-Kauhaluoma J
    Planta Med; 2014 Sep; 80(14):1234-46. PubMed ID: 25203732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological potential of sponge-associated bacteria.
    Santos-Gandelman JF; Giambiagi-deMarval M; Oelemann WM; Laport MS
    Curr Pharm Biotechnol; 2014; 15(2):143-55. PubMed ID: 25022270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates.
    McCauley EP; Piña IC; Thompson AD; Bashir K; Weinberg M; Kurz SL; Crews P
    J Antibiot (Tokyo); 2020 Aug; 73(8):504-525. PubMed ID: 32507851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products.
    Amelia TSM; Suaberon FAC; Vad J; Fahmi ADM; Saludes JP; Bhubalan K
    Mar Biotechnol (NY); 2022 Jun; 24(3):492-512. PubMed ID: 35567600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.
    Mi Y; Zhang J; He S; Yan X
    Mar Drugs; 2017 May; 15(5):. PubMed ID: 28475149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteria From Marine Sponges: A Source of New Drugs.
    Bibi F; Faheem M; Azhar EI; Yasir M; Alvi SA; Kamal MA; Ullah I; Naseer MI
    Curr Drug Metab; 2017; 18(1):11-15. PubMed ID: 27739371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine Demospongiae: A Challenging Treasure of Bioactive Compounds.
    Esposito R; Federico S; Bertolino M; Zupo V; Costantini M
    Mar Drugs; 2022 Mar; 20(4):. PubMed ID: 35447918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyketide synthases of bacterial symbionts in sponges--evolution-based applications in natural products research.
    Hochmuth T; Piel J
    Phytochemistry; 2009; 70(15-16):1841-9. PubMed ID: 19443000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification.
    Zarins-Tutt JS; Abraham ER; Bailey CS; Goss RJ
    Prog Mol Subcell Biol; 2017; 55():159-186. PubMed ID: 28238038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products.
    Roué M; Quévrain E; Domart-Coulon I; Bourguet-Kondracki ML
    Nat Prod Rep; 2012 Jul; 29(7):739-51. PubMed ID: 22660834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomedicinals from the phytosymbionts of marine invertebrates: a molecular approach.
    Dunlap WC; Battershill CN; Liptrot CH; Cobb RE; Bourne DG; Jaspars M; Long PF; Newman DJ
    Methods; 2007 Aug; 42(4):358-76. PubMed ID: 17560324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.