These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 28238061)

  • 1. miRNAs: Major modulators for crop growth and development under abiotic stresses.
    Noman A; Fahad S; Aqeel M; Ali U; Amanullah ; Anwar S; Baloch SK; Zainab M
    Biotechnol Lett; 2017 May; 39(5):685-700. PubMed ID: 28238061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA: a new target for improving plant tolerance to abiotic stress.
    Zhang B
    J Exp Bot; 2015 Apr; 66(7):1749-61. PubMed ID: 25697792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp.
    Nigam D; Kumar S; Mishra DC; Rai A; Smita S; Saha A
    Gene; 2015 Jan; 555(2):127-39. PubMed ID: 25445270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic stress miRNomes in the Triticeae.
    Alptekin B; Langridge P; Budak H
    Funct Integr Genomics; 2017 May; 17(2-3):145-170. PubMed ID: 27665284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants.
    Begum Y
    Gene; 2022 May; 821():146283. PubMed ID: 35143944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon.
    Sanz-Carbonell A; Marques MC; Bustamante A; Fares MA; Rodrigo G; Gomez G
    BMC Plant Biol; 2019 Feb; 19(1):78. PubMed ID: 30777009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice.
    Devi SJ; Madhav MS; Kumar GR; Goel AK; Umakanth B; Jahnavi B; Viraktamath BC
    Gene; 2013 Nov; 531(1):15-22. PubMed ID: 23994683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress.
    Agharbaoui Z; Leclercq M; Remita MA; Badawi MA; Lord E; Houde M; Danyluk J; Diallo AB; Sarhan F
    BMC Genomics; 2015 Apr; 16(1):339. PubMed ID: 25903161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring miRNAs for developing climate-resilient crops: A perspective review.
    Xu J; Hou QM; Khare T; Verma SK; Kumar V
    Sci Total Environ; 2019 Feb; 653():91-104. PubMed ID: 30408672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant responses to drought stress: microRNAs in action.
    Islam W; Idrees A; Waheed A; Zeng F
    Environ Res; 2022 Dec; 215(Pt 2):114282. PubMed ID: 36122702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.
    Yadav A; Khan Y; Prasad M
    Planta; 2016 Mar; 243(3):749-66. PubMed ID: 26676987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational identification of maize miRNA and their gene targets involved in biotic and abiotic stresses.
    Kaur K; Duhan N; Singh J; Kaur G; Vikal Y
    J Biosci; 2020; 45():. PubMed ID: 33184248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica.
    Yang R; Zeng Y; Yi X; Zhao L; Zhang Y
    Plant Biotechnol J; 2015 Apr; 13(3):395-408. PubMed ID: 25832169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.
    Shriram V; Kumar V; Devarumath RM; Khare TS; Wani SH
    Front Plant Sci; 2016; 7():817. PubMed ID: 27379117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives.
    Anwar A; Kim JK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA-based heavy metal homeostasis and plant growth.
    Noman A; Aqeel M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10068-10082. PubMed ID: 28229383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants.
    Basso MF; Ferreira PCG; Kobayashi AK; Harmon FG; Nepomuceno AL; Molinari HBC; Grossi-de-Sa MF
    Plant Biotechnol J; 2019 Aug; 17(8):1482-1500. PubMed ID: 30947398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.