These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 28238127)
1. Ligand Exchange and Smith AM; Millstone JE Methods Mol Biol; 2017; 1570():17-29. PubMed ID: 28238127 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of thiolated ligand exchange on gold nanoparticles monitored by 1H NMR spectroscopy. Smith AM; Marbella LE; Johnston KA; Hartmann MJ; Crawford SE; Kozycz LM; Seferos DS; Millstone JE Anal Chem; 2015 Mar; 87(5):2771-8. PubMed ID: 25658511 [TBL] [Abstract][Full Text] [Related]
3. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands. Schulz F; Vossmeyer T; Bastús NG; Weller H Langmuir; 2013 Aug; 29(31):9897-908. PubMed ID: 23829571 [TBL] [Abstract][Full Text] [Related]
4. Improved stability of "naked" gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands. Zopes D; Stein B; Mathur S; Graf C Langmuir; 2013 Sep; 29(36):11217-26. PubMed ID: 23906521 [TBL] [Abstract][Full Text] [Related]
5. Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. Wu M; Vartanian AM; Chong G; Pandiakumar AK; Hamers RJ; Hernandez R; Murphy CJ J Am Chem Soc; 2019 Mar; 141(10):4316-4327. PubMed ID: 30763078 [TBL] [Abstract][Full Text] [Related]
6. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. Park JW; Shumaker-Parry JS ACS Nano; 2015 Feb; 9(2):1665-82. PubMed ID: 25625548 [TBL] [Abstract][Full Text] [Related]
7. A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Zhou W; Ding J; Liu J Chem Commun (Camb); 2015 Aug; 51(60):12084-7. PubMed ID: 26121333 [TBL] [Abstract][Full Text] [Related]
8. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy. DeVetter BM; Mukherjee P; Murphy CJ; Bhargava R Nanoscale; 2015 May; 7(19):8766-75. PubMed ID: 25905515 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Characterization of Amphiphilic Gold Nanoparticles. Guven ZP; Silva PHJ; Luo Z; Cendrowska UB; Gasbarri M; Jones ST; Stellacci F J Vis Exp; 2019 Jul; (149):. PubMed ID: 31329168 [TBL] [Abstract][Full Text] [Related]
10. Identification of antibiotics using small molecule variable ligand display on gold nanoparticles. Bresee J; Maier KE; Melander C; Feldheim DL Chem Commun (Camb); 2010 Oct; 46(40):7516-8. PubMed ID: 20835461 [TBL] [Abstract][Full Text] [Related]
11. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642 [TBL] [Abstract][Full Text] [Related]
12. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Chen Y; Xianyu Y; Jiang X Acc Chem Res; 2017 Feb; 50(2):310-319. PubMed ID: 28068053 [TBL] [Abstract][Full Text] [Related]
13. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle. Salorinne K; Malola S; Wong OA; Rithner CD; Chen X; Ackerson CJ; Häkkinen H Nat Commun; 2016 Jan; 7():10401. PubMed ID: 26791253 [TBL] [Abstract][Full Text] [Related]
14. Designing ligand-enhanced optical absorption of thiolated gold nanoclusters. Sementa L; Barcaro G; Dass A; Stener M; Fortunelli A Chem Commun (Camb); 2015 May; 51(37):7935-8. PubMed ID: 25866233 [TBL] [Abstract][Full Text] [Related]
15. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles. Perumal S; Hofmann A; Scholz N; Rühl E; Graf C Langmuir; 2011 Apr; 27(8):4456-64. PubMed ID: 21413796 [TBL] [Abstract][Full Text] [Related]
16. A structural mass spectrometry strategy for the relative quantitation of ligands on mixed monolayer-protected gold nanoparticles. Harkness KM; Hixson BC; Fenn LS; Turner BN; Rape AC; Simpson CA; Huffman BJ; Okoli TC; McLean JA; Cliffel DE Anal Chem; 2010 Nov; 82(22):9268-74. PubMed ID: 20968282 [TBL] [Abstract][Full Text] [Related]
17. Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Bagaria HG; Ada ET; Shamsuzzoha M; Nikles DE; Johnson DT Langmuir; 2006 Aug; 22(18):7732-7. PubMed ID: 16922557 [TBL] [Abstract][Full Text] [Related]
18. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles. Baldock BL; Hutchison JE Anal Chem; 2016 Dec; 88(24):12072-12080. PubMed ID: 27783479 [TBL] [Abstract][Full Text] [Related]
19. Limits of thiol chemistry revealed by quantitative analysis of mixed layers of thiolated-PEG ligands grafted onto gold nanoparticles. Retout M; Brunetti E; Valkenier H; Bruylants G J Colloid Interface Sci; 2019 Dec; 557():807-815. PubMed ID: 31580976 [TBL] [Abstract][Full Text] [Related]
20. The ligand exchange of citrates to thioabiraterone on gold nanoparticles for prostate cancer therapy. Stolarczyk EU; Leś A; Łaszcz M; Kubiszewski M; Strzempek W; Menaszek E; Fusaro M; Sidoryk K; Stolarczyk K Int J Pharm; 2020 Jun; 583():119319. PubMed ID: 32325244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]