BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28238136)

  • 21. Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging.
    Muralidhara S; Malu K; Gaines P; Budhlall BM
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110348. PubMed ID: 31301579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum dot conjugated nanobodies for multiplex imaging of protein dynamics at synapses.
    Modi S; Higgs NF; Sheehan D; Griffin LD; Kittler JT
    Nanoscale; 2018 May; 10(21):10241-10249. PubMed ID: 29790493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Fluorescent Quantum Dot Probe for the Rapid Diagnostic High Contrast Imaging of Tumor in Mice.
    Vibin M; Vinayakan R; Fernandez FB; John A; Abraham A
    J Fluoresc; 2017 Mar; 27(2):669-677. PubMed ID: 27921209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limitations of Qdot labelling compared to directly-conjugated probes for single particle tracking of B cell receptor mobility.
    Abraham L; Lu HY; Falcão RC; Scurll J; Jou T; Irwin B; Tafteh R; Gold MR; Coombs D
    Sci Rep; 2017 Sep; 7(1):11379. PubMed ID: 28900238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking individual membrane proteins using quantum dots.
    Courty S; Dahan M
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):925-7. PubMed ID: 24086060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing Quantum Dot Probe Size for Single-Receptor Imaging.
    Le P; Vaidya R; Smith LD; Han Z; Zahid MU; Winter J; Sarkar S; Chung HJ; Perez-Pinera P; Selvin PR; Smith AM
    ACS Nano; 2020 Jul; 14(7):8343-8358. PubMed ID: 32525656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted Single Particle Tracking with Upconverting Nanoparticles.
    Dukhno O; Ghosh S; Greiner V; Bou S; Godet J; Muhr V; Buchner M; Hirsch T; Mély Y; Przybilla F
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11217-11227. PubMed ID: 38386424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced mRNA FISH with compact quantum dots.
    Liu Y; Le P; Lim SJ; Ma L; Sarkar S; Han Z; Murphy SJ; Kosari F; Vasmatzis G; Cheville JC; Smith AM
    Nat Commun; 2018 Oct; 9(1):4461. PubMed ID: 30367061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo imaging using quantum-dot-conjugated probes.
    S Lidke D; Nagy P; J Arndt-Jovin D
    Curr Protoc Cell Biol; 2007 Sep; Chapter 25():Unit 25.1. PubMed ID: 18228511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum dots in cell biology.
    Barroso MM
    J Histochem Cytochem; 2011 Mar; 59(3):237-51. PubMed ID: 21378278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct in situ hybridization with oligonucleotide functionalized quantum dot probes.
    Bentolila LA
    Methods Mol Biol; 2010; 659():147-63. PubMed ID: 20809309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single quantum dot tracking of membrane receptors.
    Bouzigues C; Lévi S; Triller A; Dahan M
    Methods Mol Biol; 2007; 374():81-91. PubMed ID: 17237531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of proteins cross-linked within galactoside polyacrylate-based hydrogels by means of a quantum dot fluororeagent.
    Goldman ER; O'Shaughnessy TJ; Soto CM; Patterson CH; Taitt CR; Spector MS; Charles PT
    Anal Bioanal Chem; 2004 Dec; 380(7-8):880-6. PubMed ID: 15551074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume.
    Bonneau S; Dahan M; Cohen LD
    IEEE Trans Image Process; 2005 Sep; 14(9):1384-95. PubMed ID: 16190473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane.
    Lv C; Lin Y; Liu AA; Hong ZY; Wen L; Zhang Z; Zhang ZL; Wang H; Pang DW
    Biomaterials; 2016 Nov; 106():69-77. PubMed ID: 27552317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracking individual kinesin motors in living cells using single quantum-dot imaging.
    Courty S; Luccardini C; Bellaiche Y; Cappello G; Dahan M
    Nano Lett; 2006 Jul; 6(7):1491-5. PubMed ID: 16834436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Preparing of semiconductor quantum dots-Smad2 monoclonal antibody fluorescent probes and testing of its related properties].
    Yang K; Sun DP; Chen R
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Oct; 26(5):541-5. PubMed ID: 19007081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum-dot antibody conjugation visualized at the single-molecule scale with high-speed atomic force microscopy.
    Umakoshi T; Udaka H; Uchihashi T; Ando T; Suzuki M; Fukuda T
    Colloids Surf B Biointerfaces; 2018 Jul; 167():267-274. PubMed ID: 29677598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioconjugation of quantum dot luminescent probes for Western blot analysis.
    Makrides SC; Gasbarro C; Bello JM
    Biotechniques; 2005 Oct; 39(4):501-6. PubMed ID: 16235562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.