These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
815 related articles for article (PubMed ID: 28238175)
1. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces. Dong E; Li C; Li L; Du S; Belkacem AN; Chen C Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175 [TBL] [Abstract][Full Text] [Related]
2. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification. Luo J; Wang J; Xu R; Xu K J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703 [TBL] [Abstract][Full Text] [Related]
3. Motor imagery EEG classification based on ensemble support vector learning. Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387 [TBL] [Abstract][Full Text] [Related]
4. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. Zhang Y; Zhou G; Jin J; Wang X; Cichocki A J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421 [TBL] [Abstract][Full Text] [Related]
5. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Kumar S; Mamun K; Sharma A Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117 [TBL] [Abstract][Full Text] [Related]
6. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification. Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635 [TBL] [Abstract][Full Text] [Related]
7. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Miao M; Wang A; Liu F Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876 [TBL] [Abstract][Full Text] [Related]
8. Classification of multi-class motor imagery EEG using four band common spatial pattern. Mahmood A; Zainab R; Ahmad RB; Saeed M; Kamboh AM Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1034-1037. PubMed ID: 29060050 [TBL] [Abstract][Full Text] [Related]
9. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI. Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667 [TBL] [Abstract][Full Text] [Related]
10. Multi-band spatial feature extraction and classification for motor imaging EEG signals based on OSFBCSP-GAO-SVM model : EEG signal processing. Shang Y; Gao X; An A Med Biol Eng Comput; 2023 Jun; 61(6):1581-1602. PubMed ID: 36813927 [TBL] [Abstract][Full Text] [Related]
11. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Malan NS; Sharma S Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693 [TBL] [Abstract][Full Text] [Related]
12. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
13. Assembling A Multi-Feature EEG Classifier for Left-Right Motor Imagery Data Using Wavelet-Based Fuzzy Approximate Entropy for Improved Accuracy. Hsu WY Int J Neural Syst; 2015 Dec; 25(8):1550037. PubMed ID: 26584583 [TBL] [Abstract][Full Text] [Related]
14. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces. Wei Q; Wei Z Biomed Mater Eng; 2015; 26 Suppl 1():S1523-32. PubMed ID: 26405916 [TBL] [Abstract][Full Text] [Related]
15. Extending motor imagery by speech imagery for brain-computer interface. Wang L; Zhang X; Zhang Y Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7056-9. PubMed ID: 24111370 [TBL] [Abstract][Full Text] [Related]
16. A single-joint multi-task motor imagery EEG signal recognition method based on Empirical Wavelet and Multi-Kernel Extreme Learning Machine. Guan S; Cong L; Wang F; Dong T J Neurosci Methods; 2024 Jul; 407():110136. PubMed ID: 38642806 [TBL] [Abstract][Full Text] [Related]
17. A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training. Liu Y; Zhang H; Chen M; Zhang L IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):169-79. PubMed ID: 26302519 [TBL] [Abstract][Full Text] [Related]
18. Time sparsification of EEG signals in motor-imagery based brain computer interfaces. Higashi H; Tanaka T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4271-4. PubMed ID: 23366871 [TBL] [Abstract][Full Text] [Related]
19. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification. Miao Y; Jin J; Daly I; Zuo C; Wang X; Cichocki A; Jung TP IEEE Trans Neural Syst Rehabil Eng; 2021; 29():699-707. PubMed ID: 33819158 [TBL] [Abstract][Full Text] [Related]
20. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG. Kirar JS; Agrawal RK J Med Syst; 2018 Mar; 42(5):78. PubMed ID: 29546648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]