These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28238264)

  • 1. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO
    Farner Budarz J; Turolla A; Piasecki AF; Bottero JY; Antonelli M; Wiesner MR
    Langmuir; 2017 Mar; 33(11):2770-2779. PubMed ID: 28238264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurement and modelling of reactive species generation in TiO
    Turolla A; Piazzoli A; Budarz JF; Wiesner MR; Antonelli M
    Chem Eng J; 2015 Jul; 271():260-268. PubMed ID: 27885321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.
    Shih YH; Liu WS; Su YF
    Environ Toxicol Chem; 2012 Aug; 31(8):1693-8. PubMed ID: 22639241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphate on the dispersion stability and coagulation/flocculation/sedimentation removal efficiency of anatase nanoparticles.
    Liu F; Zhang C; Zhao T; Zu Y; Wu X; Li B; Xing X; Niu J; Chen X; Qin C
    Chemosphere; 2019 Jun; 224():580-587. PubMed ID: 30844589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method.
    Kim C; Park HJ; Cha S; Yoon J
    Chemosphere; 2013 Nov; 93(9):2011-5. PubMed ID: 23953250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO
    Ismail L; Ferronato C; Fine L; Jaber F; Chovelon JM
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2651-2663. PubMed ID: 29134523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of anion concentration and valence on dispersion and aggregation of titanium dioxide nanoparticles in aqueous solutions.
    He H; Cheng Y; Yang C; Zeng G; Zhu C; Yan Z
    J Environ Sci (China); 2017 Apr; 54():135-141. PubMed ID: 28391922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.
    Jassby D; Farner Budarz J; Wiesner M
    Environ Sci Technol; 2012 Jul; 46(13):6934-41. PubMed ID: 22225505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity.
    Sun J; Guo LH; Zhang H; Zhao L
    Environ Sci Technol; 2014 Oct; 48(20):11962-8. PubMed ID: 25262667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modelling.
    Khataee AR
    Environ Technol; 2009 Oct; 30(11):1155-68. PubMed ID: 19947146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters.
    Li L; Sillanpää M; Risto M
    Environ Pollut; 2016 Dec; 219():132-138. PubMed ID: 27814528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate.
    Wan B; Yan Y; Liu F; Tan W; He J; Feng X
    Sci Total Environ; 2016 Feb; 544():134-42. PubMed ID: 26657256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.
    Luo Z; Li L; Wei C; Li H; Chen D
    J Environ Biol; 2015 Jul; 36 Spec No():837-43. PubMed ID: 26387359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic production of hydroxyl radicals by commercial TiO
    Tang Y; Cai R; Cao D; Kong X; Lu Y
    Toxicology; 2018 Aug; 406-407():1-8. PubMed ID: 29772259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids.
    Zhao T; Fang M; Tang Z; Zhao X; Wu F; Giesy JP
    Sci Total Environ; 2019 Nov; 692():660-668. PubMed ID: 31539974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide.
    Xia XH; Xu JL; Yun Y
    J Environ Sci (China); 2002 Apr; 14(2):188-94. PubMed ID: 12046286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.