These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28238264)

  • 21. Removal of arsenate from aqueous solution by adsorption onto titanium dioxide nanoparticles.
    Jézéquel H; Chu KH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1519-28. PubMed ID: 16835108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH and coexisting anions on removal of phosphate from aqueous solutions by inorganic-based mesostructures.
    Choi JW; Choi YS; Hong SW; Kim DJ; Lee SH
    Water Environ Res; 2012 Jul; 84(7):596-604. PubMed ID: 22876482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlating Quantitative Measurements of Radical Production by Photocatalytic TiO
    Coral JA; Kitchens CL; Brumaghim JL; Klaine SJ
    Environ Toxicol Chem; 2021 May; 40(5):1322-1334. PubMed ID: 33439484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles.
    Zhang X; Wang F; Liu B; Kelly EY; Servos MR; Liu J
    Langmuir; 2014 Jan; 30(3):839-45. PubMed ID: 24387035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter.
    Chowdhury I; Walker SL; Mylon SE
    Environ Sci Process Impacts; 2013 Jan; 15(1):275-82. PubMed ID: 24592445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.
    Katsumiti A; Berhanu D; Howard KT; Arostegui I; Oron M; Reip P; Valsami-Jones E; Cajaraville MP
    Nanotoxicology; 2015; 9(5):543-53. PubMed ID: 25188678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification.
    Alvarez-Corena JR; Bergendahl JA; Hart FL
    J Environ Manage; 2016 Oct; 181():544-551. PubMed ID: 27423767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of fluorinated anatase nanoparticles and subsequent N-doping for efficient visible light activated photocatalysis.
    Milošević I; Rtimi S; Jayaprakash A; van Driel B; Greenwood B; Aimable A; Senna M; Bowen P
    Colloids Surf B Biointerfaces; 2018 Nov; 171():445-450. PubMed ID: 30075420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of TiO
    Thipperudrappa J; Raghavendra UP; Basanagouda M
    Luminescence; 2017 Nov; 32(7):1283-1288. PubMed ID: 28497907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of arsenic genotoxicity by TiO
    Wang X; Liu Y; Wang J; Nie Y; Chen S; Hei TK; Deng Z; Wu L; Zhao G; Xu A
    Nanotoxicology; 2017 Oct; 11(8):978-995. PubMed ID: 29046140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the photocatalytic reduction of MTT tetrazolium salt on the surface of TiO2 nanoparticles: Formazan production kinetics and mechanism.
    Popescu T; Lupu AR; Raditoiu V; Purcar V; Teodorescu VS
    J Colloid Interface Sci; 2015 Nov; 457():108-20. PubMed ID: 26164242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate Changes Effect of Humic Acids on TiO
    Long M; Brame J; Qin F; Bao J; Li Q; Alvarez PJ
    Environ Sci Technol; 2017 Jan; 51(1):514-521. PubMed ID: 27982576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TiO
    Morelli E; Gabellieri E; Bonomini A; Tognotti D; Grassi G; Corsi I
    Ecotoxicol Environ Saf; 2018 Feb; 148():184-193. PubMed ID: 29055202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques.
    Chekli L; Roy M; Tijing LD; Donner E; Lombi E; Shon HK
    J Environ Manage; 2015 Aug; 159():135-142. PubMed ID: 26067894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of hydroxyl radicals in TiO2/Ti photoelectrocatalytic oxidation system using Fe(phen)3(2+) spectrophotometry.
    Jiang YL; Liu HL; Wang QH; Jiang ZH
    J Environ Sci (China); 2006; 18(1):158-61. PubMed ID: 20050566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters.
    Wang HT; Ye YY; Qi J; Li FT; Tang YL
    Water Sci Technol; 2013; 68(5):1137-43. PubMed ID: 24037166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy.
    Ninomiya K; Noda K; Ogino C; Kuroda S; Shimizu N
    Ultrason Sonochem; 2014 Jan; 21(1):289-94. PubMed ID: 23746399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.