These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 28238358)

  • 1. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits.
    Mancuso N; Shi H; Goddard P; Kichaev G; Gusev A; Pasaniuc B
    Am J Hum Genet; 2017 Mar; 100(3):473-487. PubMed ID: 28238358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.
    Gao G; McClellan J; Barbeira AN; Fiorica PN; Li JL; Mu Z; Olopade OI; Huo D; Im HK
    Am J Hum Genet; 2024 Jun; 111(6):1100-1113. PubMed ID: 38733992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.
    Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D
    Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating DNA sequencing and transcriptomic data for association analyses of low-frequency variants and lipid traits.
    Yang T; Wu C; Wei P; Pan W
    Hum Mol Genet; 2020 Feb; 29(3):515-526. PubMed ID: 31919517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs.
    Zhang Y; Wang M; Li Z; Yang X; Li K; Xie A; Dong F; Wang S; Yan J; Liu J
    Sci China Life Sci; 2024 Jun; 67(6):1133-1154. PubMed ID: 38568343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.
    Shi X; Yang C; Liu J
    Methods Mol Biol; 2021; 2212():93-103. PubMed ID: 33733352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model.
    Chen C; Yang B; Zeng Z; Yang H; Liu C; Ren J; Huang L
    BMC Genomics; 2013 Dec; 14(1):848. PubMed ID: 24299188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
    Lu Y; Beeghly-Fadiel A; Wu L; Guo X; Li B; Schildkraut JM; Im HK; Chen YA; Permuth JB; Reid BM; Teer JK; Moysich KB; Andrulis IL; Anton-Culver H; Arun BK; Bandera EV; Barkardottir RB; Barnes DR; Benitez J; Bjorge L; Brenton J; Butzow R; Caldes T; Caligo MA; Campbell I; Chang-Claude J; Claes KBM; Couch FJ; Cramer DW; Daly MB; deFazio A; Dennis J; Diez O; Domchek SM; Dörk T; Easton DF; Eccles DM; Fasching PA; Fortner RT; Fountzilas G; Friedman E; Ganz PA; Garber J; Giles GG; Godwin AK; Goldgar DE; Goodman MT; Greene MH; Gronwald J; Hamann U; Heitz F; Hildebrandt MAT; Høgdall CK; Hollestelle A; Hulick PJ; Huntsman DG; Imyanitov EN; Isaacs C; Jakubowska A; James P; Karlan BY; Kelemen LE; Kiemeney LA; Kjaer SK; Kwong A; Le ND; Leslie G; Lesueur F; Levine DA; Mattiello A; May T; McGuffog L; McNeish IA; Merritt MA; Modugno F; Montagna M; Neuhausen SL; Nevanlinna H; Nielsen FC; Nikitina-Zake L; Nussbaum RL; Offit K; Olah E; Olopade OI; Olson SH; Olsson H; Osorio A; Park SK; Parsons MT; Peeters PHM; Pejovic T; Peterlongo P; Phelan CM; Pujana MA; Ramus SJ; Rennert G; Risch H; Rodriguez GC; Rodríguez-Antona C; Romieu I; Rookus MA; Rossing MA; Rzepecka IK; Sandler DP; Schmutzler RK; Setiawan VW; Sharma P; Sieh W; Simard J; Singer CF; Song H; Southey MC; Spurdle AB; Sutphen R; Swerdlow AJ; Teixeira MR; Teo SH; Thomassen M; Tischkowitz M; Toland AE; Trichopoulou A; Tung N; Tworoger SS; van Rensburg EJ; Vanderstichele A; Vega A; Edwards DV; Webb PM; Weitzel JN; Wentzensen N; White E; Wolk A; Wu AH; Yannoukakos D; Zorn KK; Gayther SA; Antoniou AC; Berchuck A; Goode EL; Chenevix-Trench G; Sellers TA; Pharoah PDP; Zheng W; Long J
    Cancer Res; 2018 Sep; 78(18):5419-5430. PubMed ID: 30054336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits.
    Porcu E; Rüeger S; Lepik K; ; ; Santoni FA; Reymond A; Kutalik Z
    Nat Commun; 2019 Jul; 10(1):3300. PubMed ID: 31341166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
    Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP
    Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
    Wu C; Pan W
    Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-wide association studies accounting for colocalization using Egger regression.
    Barfield R; Feng H; Gusev A; Wu L; Zheng W; Pasaniuc B; Kraft P
    Genet Epidemiol; 2018 Jul; 42(5):418-433. PubMed ID: 29808603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide association study identifies new susceptibility genes and pathways for depression.
    Li X; Su X; Liu J; Li H; Li M; ; Li W; Luo XJ
    Transl Psychiatry; 2021 May; 11(1):306. PubMed ID: 34021117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.
    Diekstra FP; Saris CG; van Rheenen W; Franke L; Jansen RC; van Es MA; van Vught PW; Blauw HM; Groen EJ; Horvath S; Estrada K; Rivadeneira F; Hofman A; Uitterlinden AG; Robberecht W; Andersen PM; Melki J; Meininger V; Hardiman O; Landers JE; Brown RH; Shatunov A; Shaw CE; Leigh PN; Al-Chalabi A; Ophoff RA; van den Berg LH; Veldink JH
    PLoS One; 2012; 7(4):e35333. PubMed ID: 22509407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic fine-mapping of transcriptome-wide association studies.
    Mancuso N; Freund MK; Johnson R; Shi H; Kichaev G; Gusev A; Pasaniuc B
    Nat Genet; 2019 Apr; 51(4):675-682. PubMed ID: 30926970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.