BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 28238358)

  • 1. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits.
    Mancuso N; Shi H; Goddard P; Kichaev G; Gusev A; Pasaniuc B
    Am J Hum Genet; 2017 Mar; 100(3):473-487. PubMed ID: 28238358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.
    Gao G; McClellan J; Barbeira AN; Fiorica PN; Li JL; Mu Z; Olopade OI; Huo D; Im HK
    Am J Hum Genet; 2024 Jun; 111(6):1100-1113. PubMed ID: 38733992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.
    Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D
    Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating DNA sequencing and transcriptomic data for association analyses of low-frequency variants and lipid traits.
    Yang T; Wu C; Wei P; Pan W
    Hum Mol Genet; 2020 Feb; 29(3):515-526. PubMed ID: 31919517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs.
    Zhang Y; Wang M; Li Z; Yang X; Li K; Xie A; Dong F; Wang S; Yan J; Liu J
    Sci China Life Sci; 2024 Jun; 67(6):1133-1154. PubMed ID: 38568343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.
    Shi X; Yang C; Liu J
    Methods Mol Biol; 2021; 2212():93-103. PubMed ID: 33733352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
    Lu Y; Beeghly-Fadiel A; Wu L; Guo X; Li B; Schildkraut JM; Im HK; Chen YA; Permuth JB; Reid BM; Teer JK; Moysich KB; Andrulis IL; Anton-Culver H; Arun BK; Bandera EV; Barkardottir RB; Barnes DR; Benitez J; Bjorge L; Brenton J; Butzow R; Caldes T; Caligo MA; Campbell I; Chang-Claude J; Claes KBM; Couch FJ; Cramer DW; Daly MB; deFazio A; Dennis J; Diez O; Domchek SM; Dörk T; Easton DF; Eccles DM; Fasching PA; Fortner RT; Fountzilas G; Friedman E; Ganz PA; Garber J; Giles GG; Godwin AK; Goldgar DE; Goodman MT; Greene MH; Gronwald J; Hamann U; Heitz F; Hildebrandt MAT; Høgdall CK; Hollestelle A; Hulick PJ; Huntsman DG; Imyanitov EN; Isaacs C; Jakubowska A; James P; Karlan BY; Kelemen LE; Kiemeney LA; Kjaer SK; Kwong A; Le ND; Leslie G; Lesueur F; Levine DA; Mattiello A; May T; McGuffog L; McNeish IA; Merritt MA; Modugno F; Montagna M; Neuhausen SL; Nevanlinna H; Nielsen FC; Nikitina-Zake L; Nussbaum RL; Offit K; Olah E; Olopade OI; Olson SH; Olsson H; Osorio A; Park SK; Parsons MT; Peeters PHM; Pejovic T; Peterlongo P; Phelan CM; Pujana MA; Ramus SJ; Rennert G; Risch H; Rodriguez GC; Rodríguez-Antona C; Romieu I; Rookus MA; Rossing MA; Rzepecka IK; Sandler DP; Schmutzler RK; Setiawan VW; Sharma P; Sieh W; Simard J; Singer CF; Song H; Southey MC; Spurdle AB; Sutphen R; Swerdlow AJ; Teixeira MR; Teo SH; Thomassen M; Tischkowitz M; Toland AE; Trichopoulou A; Tung N; Tworoger SS; van Rensburg EJ; Vanderstichele A; Vega A; Edwards DV; Webb PM; Weitzel JN; Wentzensen N; White E; Wolk A; Wu AH; Yannoukakos D; Zorn KK; Gayther SA; Antoniou AC; Berchuck A; Goode EL; Chenevix-Trench G; Sellers TA; Pharoah PDP; Zheng W; Long J
    Cancer Res; 2018 Sep; 78(18):5419-5430. PubMed ID: 30054336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model.
    Chen C; Yang B; Zeng Z; Yang H; Liu C; Ren J; Huang L
    BMC Genomics; 2013 Dec; 14(1):848. PubMed ID: 24299188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits.
    Porcu E; Rüeger S; Lepik K; ; ; Santoni FA; Reymond A; Kutalik Z
    Nat Commun; 2019 Jul; 10(1):3300. PubMed ID: 31341166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
    Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP
    Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
    Wu C; Pan W
    Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide association studies accounting for colocalization using Egger regression.
    Barfield R; Feng H; Gusev A; Wu L; Zheng W; Pasaniuc B; Kraft P
    Genet Epidemiol; 2018 Jul; 42(5):418-433. PubMed ID: 29808603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome-wide association study identifies new susceptibility genes and pathways for depression.
    Li X; Su X; Liu J; Li H; Li M; ; Li W; Luo XJ
    Transl Psychiatry; 2021 May; 11(1):306. PubMed ID: 34021117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.
    Diekstra FP; Saris CG; van Rheenen W; Franke L; Jansen RC; van Es MA; van Vught PW; Blauw HM; Groen EJ; Horvath S; Estrada K; Rivadeneira F; Hofman A; Uitterlinden AG; Robberecht W; Andersen PM; Melki J; Meininger V; Hardiman O; Landers JE; Brown RH; Shatunov A; Shaw CE; Leigh PN; Al-Chalabi A; Ophoff RA; van den Berg LH; Veldink JH
    PLoS One; 2012; 7(4):e35333. PubMed ID: 22509407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.