These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
57 related articles for article (PubMed ID: 2823839)
1. Effects of dibutyryl cyclic adenosine monophosphate and colforsin on mucociliary transport using frog palate. Noda Y; Yamaki K; Takagi K; Satake T Arzneimittelforschung; 1987 Jul; 37(7):822-5. PubMed ID: 2823839 [TBL] [Abstract][Full Text] [Related]
2. Effect of ibudilast on mucociliary transport using frog palate. Noda Y; Yamaki K; Takagi K; Satake T Arerugi; 1989 May; 38(5):434-7. PubMed ID: 2556092 [TBL] [Abstract][Full Text] [Related]
3. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis. Zaremba TG; Fishman PH Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420 [TBL] [Abstract][Full Text] [Related]
4. Cyclic adenosine monophosphate stimulation of mucociliary activity in the upper airways in vivo. Cervin A; Dolata J; Lindberg S; Mercke U Ann Otol Rhinol Laryngol; 1995 May; 104(5):388-93. PubMed ID: 7747910 [TBL] [Abstract][Full Text] [Related]
5. Evidence that parathyroid hormone-mediated calcium transport in rat brain synaptosomes is independent of cyclic adenosine monophosphate. Fraser CL; Sarnacki P; Budayr A J Clin Invest; 1988 Apr; 81(4):982-8. PubMed ID: 2832450 [TBL] [Abstract][Full Text] [Related]
6. Intracellular lithium and cyclic AMP levels are mutually regulated in neuronal cells. Montezinho LP; B Duarte C; Fonseca CP; Glinka Y; Layden B; Mota de Freitas D; Geraldes CF; Castro MM J Neurochem; 2004 Aug; 90(4):920-30. PubMed ID: 15287898 [TBL] [Abstract][Full Text] [Related]
7. Ophiopogon root (Radix Ophiopogonis) prevents ultra-structural damage by SO2 in an epithelial injury model for studies of mucociliary transport. O'Brien DW; Morris MI; Lee MS; Tai S; King M Life Sci; 2004 Mar; 74(19):2413-22. PubMed ID: 14998718 [TBL] [Abstract][Full Text] [Related]
8. A mechanism of airway injury in an epithelial model of mucociliary clearance. O'Brien DW; Morris MI; Ding J; Zayas JG; Tai S; King M Respir Res; 2004 Aug; 5(1):10. PubMed ID: 15357883 [TBL] [Abstract][Full Text] [Related]
9. Luffa operculata affects mucociliary function of the isolated frog palate. Menon-Miyake MA; Carvalho de Oliveira R; Lorenzi-Filho G; Saldiva PH; Butugan O Am J Rhinol; 2005; 19(4):353-7. PubMed ID: 16171168 [TBL] [Abstract][Full Text] [Related]
10. [Effect of saibokuto on mucociliary transport system in the airway--basic and clinical assessments]. Takeyama K; Chiyotani A; Tamaoki J; Kanemura T; Takizawa T; Konno K Arerugi; 1992 Jan; 41(1):43-8. PubMed ID: 1554324 [TBL] [Abstract][Full Text] [Related]
11. Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity. Rose RJ; Liu H; Palmer D; Maurice DH Br J Pharmacol; 1997 Sep; 122(2):233-40. PubMed ID: 9313930 [TBL] [Abstract][Full Text] [Related]
12. Effects of adrenergic and cholinergic agents and leukotrienes on mucociliary transport force measured by using frog palate. Yamaki K; Noda Y; Takagi K; Satake T Nagoya J Med Sci; 1987 Mar; 49(1-4):21-30. PubMed ID: 3037374 [No Abstract] [Full Text] [Related]
13. The role of rheological properties in mucociliary transport by frog palate ciliated model. Yu DM; Amidon GL; Weiner ND; Fleisher D; Goldberg AH Pharm Res; 1994 Dec; 11(12):1785-91. PubMed ID: 7899245 [TBL] [Abstract][Full Text] [Related]
14. Effects of colforsin, trequinsin and isoprenaline on norepinephrine-induced contractions and cyclic nucleotide levels of isolated vascular tissue. Linz W; Wiemer G; Schölkens BA Arzneimittelforschung; 1988 Feb; 38(2):240-3. PubMed ID: 2835960 [TBL] [Abstract][Full Text] [Related]
15. Renal effects of adenosine 3',5'-cyclic monophosphate and dibutyryl adenosine 3',5'-cyclic monophosphate. Evidence for a role for adenosine 3',5'-cyclic monophosphate in the regulation of proximal tubular sodium reabsorption. Gill JR; Casper AG J Clin Invest; 1971 Jun; 50(6):1231-40. PubMed ID: 4326154 [TBL] [Abstract][Full Text] [Related]
16. Effect of cAMP and related compounds on newt epidermal cell migration both in vivo and in vitro. Dunlap MK; Donaldson DJ J Exp Zool; 1980 Apr; 212(1):13-9. PubMed ID: 6251154 [TBL] [Abstract][Full Text] [Related]
17. Adenosine inhibition of catecholamine-induced increase in force of contraction in guinea-pig atrial and ventricular heart preparations. Evidence against a cyclic AMP- and cyclic GMP-dependent effect. Böhm M; Brückner R; Hackbarth I; Haubitz B; Linhart R; Meyer W; Schmidt B; Schmitz W; Scholz H J Pharmacol Exp Ther; 1984 Aug; 230(2):483-92. PubMed ID: 6086891 [TBL] [Abstract][Full Text] [Related]
18. Bronchodilator mechanisms in bullfrog lung: differences in response to isoproterenol, theophylline and papaverine. Taylor SM; Downes H J Pharmacol Exp Ther; 1982 Nov; 223(2):359-67. PubMed ID: 6290638 [TBL] [Abstract][Full Text] [Related]
19. A re-evaluated role for cyclic AMP in uterine relaxation. Differential effect of isoproterenol and forskolin. Do Khac L; Mokhtari A; Harbon S J Pharmacol Exp Ther; 1986 Oct; 239(1):236-42. PubMed ID: 3020232 [TBL] [Abstract][Full Text] [Related]
20. Discrepancy between inotropic response and cyclic AMP production induced by isoprenaline and forskolin in rat ventricle strips. Martinez E; Fuentes T; Collado MC; Hernández J Res Commun Mol Pathol Pharmacol; 1997 May; 96(2):157-67. PubMed ID: 9226750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]