BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28238422)

  • 1. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.
    Chang GH; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2017 Mar; 54():33-43. PubMed ID: 28238422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reduced-order model of a patient-specific cerebral aneurysm for rapid evaluation and treatment planning.
    Han S; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2020 Apr; 103():109653. PubMed ID: 32037019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity.
    Algabri YA; Rookkapan S; Gramigna V; Espino DM; Chatpun S
    Australas Phys Eng Sci Med; 2019 Mar; 42(1):181-190. PubMed ID: 30762222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.
    Soudah E; Ng EY; Loong TH; Bordone M; Pua U; Narayanan S
    Comput Math Methods Med; 2013; 2013():472564. PubMed ID: 23864906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haemodynamics and stresses in abdominal aortic aneurysms: A fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle.
    Drewe CJ; Parker LP; Kelsey LJ; Norman PE; Powell JT; Doyle BJ
    J Biomech; 2017 Jul; 60():150-156. PubMed ID: 28693819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.
    Sarrami-Foroushani A; Lassila T; Gooya A; Geers AJ; Frangi AF
    J Biomech; 2016 Dec; 49(16):3815-3823. PubMed ID: 28573970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics.
    Piccinelli M; Vergara C; Antiga L; Forzenigo L; Biondetti P; Domanin M
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1263-76. PubMed ID: 23446648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic flow modeling through an abdominal aorta aneurysm using data mining tools.
    Filipovic N; Ivanovic M; Krstajic D; Kojic M
    IEEE Trans Inf Technol Biomed; 2011 Mar; 15(2):189-94. PubMed ID: 21134818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall Shear Stress Estimation of Thoracic Aortic Aneurysm Using Computational Fluid Dynamics.
    Febina J; Sikkandar MY; Sudharsan NM
    Comput Math Methods Med; 2018; 2018():7126532. PubMed ID: 30008797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the Strain Assessment of a Phantom of Abdominal Aortic Aneurysm: Comparison of Results Obtained From Magnetic Resonance Imaging and Stereovision Measurements.
    Wang Y; Joannic D; Juillion P; Monnet A; Delassus P; Lalande A; Fontaine JF
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms.
    Li Z; Kleinstreuer C
    J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.
    Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ
    Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.