These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 28238765)
1. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Billen B; Vincke C; Hansen R; Devoogdt N; Muyldermans S; Adriaensens P; Guedens W Protein Expr Purif; 2017 May; 133():25-34. PubMed ID: 28238765 [TBL] [Abstract][Full Text] [Related]
2. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Ta DT; Redeker ES; Billen B; Reekmans G; Sikulu J; Noben JP; Guedens W; Adriaensens P Protein Eng Des Sel; 2015 Oct; 28(10):351-63. PubMed ID: 26243885 [TBL] [Abstract][Full Text] [Related]
3. Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. Graulus GJ; Ta DT; Tran H; Hansen R; Billen B; Royackers E; Noben JP; Devoogdt N; Muyldermans S; Guedens W; Adriaensens P Methods Mol Biol; 2019; 2033():117-130. PubMed ID: 31332751 [TBL] [Abstract][Full Text] [Related]
4. Improving the yield of recalcitrant Nanobodies® by simple modifications to the standard protocol. Kariuki CK; Magez S Protein Expr Purif; 2021 Sep; 185():105906. PubMed ID: 33991675 [TBL] [Abstract][Full Text] [Related]
5. Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Xu Y; Lewis D; Chou CP Appl Microbiol Biotechnol; 2008 Jul; 79(6):1035-44. PubMed ID: 18496685 [TBL] [Abstract][Full Text] [Related]
6. Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase. de Marco A Methods Mol Biol; 2022; 2446():145-157. PubMed ID: 35157272 [TBL] [Abstract][Full Text] [Related]
7. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. Shriver-Lake LC; Goldman ER; Zabetakis D; Anderson GP J Immunol Methods; 2017 Apr; 443():64-67. PubMed ID: 28131818 [TBL] [Abstract][Full Text] [Related]
8. Accurate quantitation for in vitro refolding of single domain antibody fragments expressed as inclusion bodies by referring the concomitant expression of a soluble form in the periplasms of Escherichia coli. Noguchi T; Nishida Y; Takizawa K; Cui Y; Tsutsumi K; Hamada T; Nishi Y J Immunol Methods; 2017 Mar; 442():1-11. PubMed ID: 27939301 [TBL] [Abstract][Full Text] [Related]
9. Production of Disulfide-Bonded Proteins in Escherichia coli. Ke N; Berkmen M Curr Protoc Mol Biol; 2014 Oct; 108():16.1B.1-16.1B.21. PubMed ID: 25271713 [TBL] [Abstract][Full Text] [Related]
10. Sequential closure of the cytoplasm and then the periplasm during cell division in Escherichia coli. Skoog K; Söderström B; Widengren J; von Heijne G; Daley DO J Bacteriol; 2012 Feb; 194(3):584-6. PubMed ID: 22101847 [TBL] [Abstract][Full Text] [Related]
11. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Salema V; Fernández LÁ Protein Expr Purif; 2013 Sep; 91(1):42-8. PubMed ID: 23856605 [TBL] [Abstract][Full Text] [Related]
12. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. Venturi M; Seifert C; Hunte C J Mol Biol; 2002 Jan; 315(1):1-8. PubMed ID: 11771962 [TBL] [Abstract][Full Text] [Related]
13. Effects of variable domain orientation on anti-HER2 single-chain variable fragment antibody expressed in the Escherichia coli cytoplasm. Koçer İ; Cox EC; DeLisa MP; Çelik E Biotechnol Prog; 2021 Mar; 37(2):e3102. PubMed ID: 33190426 [TBL] [Abstract][Full Text] [Related]
14. Use of the human hepcidin gene to build a positive-selection vector for periplasmic expression in Escherichia coli. Haustant J; Sil A; Maillo-Rius C; Hocquellet A; Costaglioli P; Garbay B; Dieryck W Anal Biochem; 2016 May; 500():35-7. PubMed ID: 26873403 [TBL] [Abstract][Full Text] [Related]
15. Microbial host selection and periplasmic folding in Escherichia coli affect the biochemical characteristics of a cutinase from Fusarium oxysporum. Nikolaivits E; Kokkinou A; Karpusas M; Topakas E Protein Expr Purif; 2016 Nov; 127():1-7. PubMed ID: 27302766 [TBL] [Abstract][Full Text] [Related]
16. Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Salinas G; Pellizza L; Margenat M; Fló M; Fernández C Biotechnol J; 2011 Jun; 6(6):686-99. PubMed ID: 21567960 [TBL] [Abstract][Full Text] [Related]
17. Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain. Dow BA; Tatulian SA; Davidson VL Protein Expr Purif; 2015 Apr; 108():9-12. PubMed ID: 25573388 [TBL] [Abstract][Full Text] [Related]
18. Production of bioactive chicken follistatin315 in Escherichia coli. Lee SB; Choi R; Park SK; Kim YS Appl Microbiol Biotechnol; 2014 Dec; 98(24):10041-51. PubMed ID: 25411099 [TBL] [Abstract][Full Text] [Related]
19. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector. Noor A; Walser G; Wesseling M; Giron P; Laffra AM; Haddouchi F; De Grève J; Kronenberger P BMC Res Notes; 2018 Oct; 11(1):751. PubMed ID: 30348204 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies. Ta DT; Guedens W; Vranken T; Vanschoenbeek K; Steen Redeker E; Michiels L; Adriaensens P Biosensors (Basel); 2016 Jul; 6(3):. PubMed ID: 27399790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]