These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically. Dickey AS; Pineda VV; Tsunemi T; Liu PP; Miranda HC; Gilmore-Hall SK; Lomas N; Sampat KR; Buttgereit A; Torres MJ; Flores AL; Arreola M; Arbez N; Akimov SS; Gaasterland T; Lazarowski ER; Ross CA; Yeo GW; Sopher BL; Magnuson GK; Pinkerton AB; Masliah E; La Spada AR Nat Med; 2016 Jan; 22(1):37-45. PubMed ID: 26642438 [TBL] [Abstract][Full Text] [Related]
25. Genome Editing in Human Induced Pluripotent Stem Cells (hiPSCs). Higo S; Hikoso S; Miyagawa S; Sakata Y Methods Mol Biol; 2021; 2320():235-245. PubMed ID: 34302662 [TBL] [Abstract][Full Text] [Related]
26. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Hazelbaker DZ; Beccard A; Bara AM; Dabkowski N; Messana A; Mazzucato P; Lam D; Manning D; Eggan K; Barrett LE Stem Cell Reports; 2017 Oct; 9(4):1315-1327. PubMed ID: 29020615 [TBL] [Abstract][Full Text] [Related]
27. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9. Ben Jehuda R; Shemer Y; Binah O Stem Cell Rev Rep; 2018 Jun; 14(3):323-336. PubMed ID: 29623532 [TBL] [Abstract][Full Text] [Related]
28. CRISPR/Cas9-mediated suppression of A4GALT rescues endothelial cell dysfunction in a fabry disease vasculopathy model derived from human induced pluripotent stem cells. Shin YJ; Chae SY; Lee H; Fang X; Cui S; Lim SW; Lee KI; Lee JY; Li C; Yang CW; Chung BH Atherosclerosis; 2024 Oct; 397():118549. PubMed ID: 39141976 [TBL] [Abstract][Full Text] [Related]
29. Generation of 5 induced pluripotent stem cell lines, LUMCi007-A and B and LUMCi008-A, B and C, from 2 patients with Huntington disease. van der Graaf LM; Gardiner SL; Tok M; Brands T; Boogaard MW; Pepers BA; Eussen B; de Klein A; Aziz NA; Freund C; Buijsen RAM; van Roon-Mom WMC Stem Cell Res; 2019 Aug; 39():101498. PubMed ID: 31326748 [TBL] [Abstract][Full Text] [Related]
30. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 Ortiz-Virumbrales M; Moreno CL; Kruglikov I; Marazuela P; Sproul A; Jacob S; Zimmer M; Paull D; Zhang B; Schadt EE; Ehrlich ME; Tanzi RE; Arancio O; Noggle S; Gandy S Acta Neuropathol Commun; 2017 Oct; 5(1):77. PubMed ID: 29078805 [TBL] [Abstract][Full Text] [Related]
31. Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics. Akimov SS; Jiang M; Kedaigle AJ; Arbez N; Marque LO; Eddings CR; Ranum PT; Whelan E; Tang A; Wang R; DeVine LR; Talbot CC; Cole RN; Ratovitski T; Davidson BL; Fraenkel E; Ross CA Hum Mol Genet; 2021 Nov; 30(24):2469-2487. PubMed ID: 34296279 [TBL] [Abstract][Full Text] [Related]
32. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Merienne N; Vachey G; de Longprez L; Meunier C; Zimmer V; Perriard G; Canales M; Mathias A; Herrgott L; Beltraminelli T; Maulet A; Dequesne T; Pythoud C; Rey M; Pellerin L; Brouillet E; Perrier AL; du Pasquier R; Déglon N Cell Rep; 2017 Sep; 20(12):2980-2991. PubMed ID: 28930690 [TBL] [Abstract][Full Text] [Related]
33. Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. HD iPSC Consortium Cell Stem Cell; 2012 Aug; 11(2):264-78. PubMed ID: 22748968 [TBL] [Abstract][Full Text] [Related]
34. Purification of Pluripotent Stem Cell-Derived Cardiomyocytes Using CRISPR/Cas9-Mediated Integration of Fluorescent Reporters. Galdos FX; Darsha AK; Paige SL; Wu SM Methods Mol Biol; 2021; 2158():223-240. PubMed ID: 32857377 [TBL] [Abstract][Full Text] [Related]
35. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells. Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106 [TBL] [Abstract][Full Text] [Related]
36. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. McQuade LR; Balachandran A; Scott HA; Khaira S; Baker MS; Schmidt U J Proteome Res; 2014 Dec; 13(12):5648-59. PubMed ID: 25316320 [TBL] [Abstract][Full Text] [Related]
37. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Mattis VB; Tom C; Akimov S; Saeedian J; Østergaard ME; Southwell AL; Doty CN; Ornelas L; Sahabian A; Lenaeus L; Mandefro B; Sareen D; Arjomand J; Hayden MR; Ross CA; Svendsen CN Hum Mol Genet; 2015 Jun; 24(11):3257-71. PubMed ID: 25740845 [TBL] [Abstract][Full Text] [Related]
39. Generation of a PXR reporter human induced pluripotent stem cell line (PXR-mCherry hiPSC) using the CRISPR/Cas9 system. Kim H; Kim JW; Kim SJ; Choi YJ; Kim DS; Park HJ Stem Cell Res; 2018 Jan; 26():72-75. PubMed ID: 29247817 [TBL] [Abstract][Full Text] [Related]
40. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. Zhu L; Gomez-Duran A; Saretzki G; Jin S; Tilgner K; Melguizo-Sanchis D; Anyfantis G; Al-Aama J; Vallier L; Chinnery P; Lako M; Armstrong L J Cell Biol; 2016 Oct; 215(2):187-202. PubMed ID: 27810911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]