These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28239060)
1. Polydimethylsiloxane Droplets Exhibit Extraordinarily High Antioxidative Effects in Deep-Frying. Totani N; Yazaki N; Yawata M J Oleo Sci; 2017 Apr; 66(4):329-336. PubMed ID: 28239060 [TBL] [Abstract][Full Text] [Related]
2. The Antioxidation Mechanism of Polydimethylsiloxane in Oil. Yawata M; Satoh T; Iwahashi M; Hori R; Takeuchi S; Shiramasa H; Totani N J Oleo Sci; 2015; 64(8):853-9. PubMed ID: 26179005 [TBL] [Abstract][Full Text] [Related]
3. Polydimethylsiloxane Shows Strong Protective Effects in Continuous Deep-Frying Operations. Totani N; Yawata M; Yasaki N J Oleo Sci; 2018; 67(11):1389-1395. PubMed ID: 30404959 [TBL] [Abstract][Full Text] [Related]
4. Study on the effect of polydimethylsiloxane from the viewpoint of oxygen content in oil. Yawata M; Iwahashi M; Hori R; Shiramasa H; Totani N J Oleo Sci; 2014; 63(10):987-94. PubMed ID: 25274472 [TBL] [Abstract][Full Text] [Related]
5. Effect of the addition of basil essential oil on the degradation of palm olein during repeated deep frying of French fries. Cardoso-Ugarte GA; Morlán-Palmas CC; Sosa-Morales ME J Food Sci; 2013 Jul; 78(7):C978-84. PubMed ID: 23772857 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the frying performance of olive oil and palm superolein. Romano R; Giordano A; Vitiello S; Grottaglie LL; Musso SS J Food Sci; 2012 May; 77(5):C519-31. PubMed ID: 22490166 [TBL] [Abstract][Full Text] [Related]
7. Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. Fullana A; Carbonell-Barrachina AA; Sidhu S J Agric Food Chem; 2004 Aug; 52(16):5207-14. PubMed ID: 15291498 [TBL] [Abstract][Full Text] [Related]
8. Sitosterol as an antioxidant in frying oils. Singh A Food Chem; 2013 Apr; 137(1-4):62-7. PubMed ID: 23199991 [TBL] [Abstract][Full Text] [Related]
9. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deep-frying. Multari S; Marsol-Vall A; Heponiemi P; Suomela JP; Yang B Food Res Int; 2019 Aug; 122():318-329. PubMed ID: 31229085 [TBL] [Abstract][Full Text] [Related]
10. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil. Ma JK; Zhang H; Tsuchiya T; Akiyama Y; Chen JY Food Sci Technol Int; 2015 Apr; 21(3):163-74. PubMed ID: 24474189 [TBL] [Abstract][Full Text] [Related]
11. Phosphatidylcholine and dihydrocaffeic acid amide mixture enhanced the thermo-oxidative stability of canola oil. Aladedunye F; Przybylski R Food Chem; 2014 May; 150():494-9. PubMed ID: 24360481 [TBL] [Abstract][Full Text] [Related]
12. Oxygen content and oxidation in frying oil. Totani N; Yawata M; Mori T; Hammond EG J Oleo Sci; 2013; 62(12):989-95. PubMed ID: 24292350 [TBL] [Abstract][Full Text] [Related]
13. Antioxidative effects of alpha-tocopherol and ascorbyl palmitate on thermal oxidation of canola oil. Onal B; Ergin G Nahrung; 2002 Dec; 46(6):420-6. PubMed ID: 12577592 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of frying oils during intermittent usage. Totani N; Tateishi S; Mori T; Hammond EG J Oleo Sci; 2012; 61(11):601-7. PubMed ID: 23138249 [TBL] [Abstract][Full Text] [Related]
15. Quality evaluation of noble mixed oil blended with palm and canola oil. Choi H; Lee E; Lee KG J Oleo Sci; 2014; 63(7):653-60. PubMed ID: 24976612 [TBL] [Abstract][Full Text] [Related]
16. Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes. Andrikopoulos NK; Dedoussis GV; Falirea A; Kalogeropoulos N; Hatzinikola HS Int J Food Sci Nutr; 2002 Jul; 53(4):351-63. PubMed ID: 12090031 [TBL] [Abstract][Full Text] [Related]
17. The antioxidants in oils heated at frying temperature, whether natural or added, could protect against postprandial oxidative stress in obese people. Perez-Herrera A; Rangel-Zuñiga OA; Delgado-Lista J; Marin C; Perez-Martinez P; Tasset I; Tunez I; Quintana-Navarro GM; Lopez-Segura F; Luque de Castro MD; Lopez-Miranda J; Camargo A; Perez-Jimenez F Food Chem; 2013 Jun; 138(4):2250-9. PubMed ID: 23497883 [TBL] [Abstract][Full Text] [Related]
18. Performance of structured lipids incorporating selected phenolic and ascorbic acids. Gruczynska E; Przybylski R; Aladedunye F Food Chem; 2015 Apr; 173():778-83. PubMed ID: 25466089 [TBL] [Abstract][Full Text] [Related]
19. Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken. Song J; Kim MJ; Kim YJ; Lee J Food Chem; 2017 Apr; 220():306-312. PubMed ID: 27855904 [TBL] [Abstract][Full Text] [Related]
20. Chemistry of deep-fat frying oils. Choe E; Min DB J Food Sci; 2007 Jun; 72(5):R77-86. PubMed ID: 17995742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]