These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28239253)

  • 1. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis.
    Teodoro G; Kurc T; Andrade G; Kong J; Ferreira R; Saltz J
    Int J High Perform Comput Appl; 2017 Jan; 31(1):32-51. PubMed ID: 28239253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU: A Case Study from Microscopy Image Analysis.
    Teodoro G; Kurc T; Kong J; Cooper L; Saltz J
    IEEE Trans Parallel Distrib Syst; 2014 May; 2014():1063-1072. PubMed ID: 25419088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems.
    Andrade G; Ferreira R; Teodoro G; Rocha L; Saltz JH; Kurc T
    Proc Symp Comput Archit High Perform Comput; 2014 Oct; 2014():89-96. PubMed ID: 26640423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines.
    Teodoro G; Pan T; Kurc T; Kong J; Cooper L; Saltz J
    Parallel Comput; 2013 Apr; 39(4-5):189-211. PubMed ID: 23908562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative and out-of-core execution of the irregular wavefront propagation pattern on hybrid machines with Intel
    Gomes J; de Melo ACMA; Kong J; Kurc T; Saltz JH; Teodoro G
    Concurr Comput; 2018 Jul; 30(14):. PubMed ID: 30344454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms.
    Teodoro G; Pan T; Kurc TM; Kong J; Cooper LA; Podhorszki N; Klasky S; Saltz JH
    Proc IPDPS (Conf); 2013 May; 2013():103-114. PubMed ID: 25419546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems.
    Teodoro G; Kurc TM; Pan T; Cooper LA; Kong J; Widener P; Saltz JH
    Proc IPDPS (Conf); 2012 May; 2012():1093-1104. PubMed ID: 25419545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient irregular wavefront propagation algorithms on Intel
    Gomes JM; Teodoro G; de Melo A; Kong J; Kurc T; Saltz JH
    Proc Symp Comput Archit High Perform Comput; 2015 Oct; 2015():25-32. PubMed ID: 27298591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.
    Hofmann HG; Keck B; Rohkohl C; Hornegger J
    Med Phys; 2011 Jan; 38(1):468-73. PubMed ID: 21361215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.
    Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Jun; 13(6):2712-2716. PubMed ID: 28561575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC) Architecture.
    Wald I
    IEEE Trans Vis Comput Graph; 2012 Jan; 18(1):47-57. PubMed ID: 21149890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region Templates: Data Representation and Management for High-Throughput Image Analysis.
    Teodoro G; Pan T; Kurc T; Kong J; Cooper L; Klasky S; Saltz J
    Parallel Comput; 2014 Dec; 40(10):589-610. PubMed ID: 26139953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture.
    Peng S; Cheng M; Huang K; Cui Y; Zhang Z; Guo R; Zhang X; Yang S; Liao X; Lu Y; Zou Q; Shi B
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):282. PubMed ID: 30367570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
    Lan H; Chan Y; Xu K; Schmidt B; Peng S; Liu W
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):267. PubMed ID: 27455061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Join Algorithms For Large Database Tables in a Multi-GPU Environment.
    Rui R; Li H; Tu YC
    Proceedings VLDB Endowment; 2020 Dec; 14(4):708-720. PubMed ID: 38260211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and opportunities for the simulation of calcium waves on modern multi-core and many-core parallel computing platforms.
    Barajas C; Gobbert MK; Kroiz GC; Peercy BE
    Int J Numer Method Biomed Eng; 2021 Nov; 37(11):e3244. PubMed ID: 31356001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating Spatial Cross-Matching on CPU-GPU Hybrid Platform With CUDA and OpenACC.
    Baig F; Gao C; Teng D; Kong J; Wang F
    Front Big Data; 2020 May; 3():. PubMed ID: 32954255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
    Sluga D; Curk T; Zupan B; Lotric U
    BMC Bioinformatics; 2014 Jun; 15():216. PubMed ID: 24964802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-based parallel skin lesion border detection with webCL.
    Lemon J; Kockara S; Halic T; Mete M
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S5. PubMed ID: 26423836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Coupled-Cluster Calculations with GPUs: An Implementation of the Density-Fitted CCSD(T) Approach for Heterogeneous Computing Architectures Using OpenMP Directives.
    Datta D; Gordon MS
    J Chem Theory Comput; 2023 Nov; 19(21):7640-7657. PubMed ID: 37878756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.