These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28239415)

  • 21. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic Engineering of
    Sharma A; Noda M; Sugiyama M; Kaur B; Ahmad A
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic Inducible Regulatory Systems Optimized for the Modulation of Secondary Metabolite Production in Streptomyces.
    Ji CH; Kim H; Kang HS
    ACS Synth Biol; 2019 Mar; 8(3):577-586. PubMed ID: 30807691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae.
    Peng B; Esquirol L; Lu Z; Shen Q; Cheah LC; Howard CB; Scott C; Trau M; Dumsday G; Vickers CE
    Nat Commun; 2022 May; 13(1):2895. PubMed ID: 35610221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional replacement of isoprenoid pathways in Rhodobacter sphaeroides.
    Orsi E; Beekwilder J; van Gelder D; van Houwelingen A; Eggink G; Kengen SWM; Weusthuis RA
    Microb Biotechnol; 2020 Jul; 13(4):1082-1093. PubMed ID: 32207882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter.
    Møller TS; Hay J; Saxton MJ; Bunting K; Petersen EI; Kjærulff S; Finnis CJ
    Microb Cell Fact; 2017 Jan; 16(1):11. PubMed ID: 28100236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered Reversal of Function in Glycolytic Yeast Promoters.
    Rajkumar AS; Özdemir E; Lis AV; Schneider K; Qin J; Jensen MK; Keasling JD
    ACS Synth Biol; 2019 Jun; 8(6):1462-1468. PubMed ID: 31051075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in
    Ye M; Gao J; Li J; Yu W; Bai F; Zhou YJ
    Synth Syst Biotechnol; 2024 Jun; 9(2):234-241. PubMed ID: 38385152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Yeast Peroxisomes for α-Bisabolene Production from Sole Methanol with the Aid of Proteomic Analysis.
    Gao L; Hou R; Cai P; Yao L; Wu X; Li Y; Zhang L; Zhou YJ
    JACS Au; 2024 Jul; 4(7):2474-2483. PubMed ID: 39055156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CHO genome mining for synthetic promoter design.
    Johari YB; Brown AJ; Alves CS; Zhou Y; Wright CM; Estes SD; Kshirsagar R; James DC
    J Biotechnol; 2019 Mar; 294():1-13. PubMed ID: 30703471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter.
    Noseda DG; Blasco M; Recúpero M; Galvagno MÁ
    Protein Expr Purif; 2014 Dec; 104():85-91. PubMed ID: 25278015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose-Dependent Promoters for Dynamic Regulation of Metabolic Pathways.
    Maury J; Kannan S; Jensen NB; Öberg FK; Kildegaard KR; Forster J; Nielsen J; Workman CT; Borodina I
    Front Bioeng Biotechnol; 2018; 6():63. PubMed ID: 29872655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16.
    Johnson AO; Gonzalez-Villanueva M; Tee KL; Wong TS
    ACS Synth Biol; 2018 Aug; 7(8):1918-1928. PubMed ID: 29949349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review.
    Yang Z; Zhang Z
    Biotechnol Adv; 2018; 36(1):182-195. PubMed ID: 29129652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae.
    Rantasalo A; Kuivanen J; Penttilä M; Jäntti J; Mojzita D
    ACS Synth Biol; 2018 Jun; 7(6):1573-1587. PubMed ID: 29750501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.