These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28239438)

  • 21. Surface-Layer Wind Shear and Momentum Transport From Clear-Sky to Cloudy Weather Regimes Over Land.
    Koning AM; Nuijens L; Bosveld FC; Siebesma AP; van Dorp PA; Jonker HJJ
    J Geophys Res Atmos; 2021 Nov; 126(21):e2021JD035087. PubMed ID: 35865264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Improved Convective Ice Parameterization for the NASA GISS Global Climate Model and Impacts on Cloud Ice Simulation.
    Elsaesser GS; Del Genio AD; Jiang JH; VAN Lier-Walqui M
    J Clim; 2017 Jan; 30(1):317-336. PubMed ID: 32690981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds.
    Ackerman AS; Toon OB; Hobbs PV
    Science; 1993 Oct; 262(5131):226-9. PubMed ID: 17841869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation.
    Krupa SV; Kickert RN
    Environ Pollut; 1989; 61(4):263-393. PubMed ID: 15092357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors determining tropical upper-level cloud radiative effect in the radiative-convective equilibrium framework.
    Kang H; Choi YS; Jiang JH
    Sci Rep; 2024 Jun; 14(1):13419. PubMed ID: 38862551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of a Mixed Ocean Layer and the Diurnal Cycle on Convective Aggregation.
    Tompkins AM; Semie AG
    J Adv Model Earth Syst; 2021 Dec; 13(12):e2020MS002186. PubMed ID: 35859729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land.
    Ghausi SA; Tian Y; Zehe E; Kleidon A
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2220400120. PubMed ID: 37428906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloud-driven modulations of Greenland ice sheet surface melt.
    Niwano M; Hashimoto A; Aoki T
    Sci Rep; 2019 Jul; 9(1):10380. PubMed ID: 31316097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Interplay Between Convective Aggregation, Surface Temperature Gradients, and Climate Sensitivity.
    Coppin D; Bony S
    J Adv Model Earth Syst; 2018 Dec; 10(12):3123-3138. PubMed ID: 31007836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloud scattering impact on thermal radiative transfer and global longwave radiation.
    Jin Z; Zhang Y; Del Genio A; Schmidt G; Kelley M
    J Quant Spectrosc Radiat Transf; 2019 Dec; 239():. PubMed ID: 32655188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Congestus Mode Invigoration by Convective Aggregation in Simulations of Radiative-Convective Equilibrium.
    Sokol AB; Hartmann DL
    J Adv Model Earth Syst; 2022 Jul; 14(7):e2022MS003045. PubMed ID: 35865456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observational evidence that cloud feedback amplifies global warming.
    Ceppi P; Nowack P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34282010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indian dust-rain storm: Possible influences of dust ice nuclei on deep convective clouds.
    Yuan T; Huang J; Cao J; Zhang G; Ma X
    Sci Total Environ; 2021 Jul; 779():146439. PubMed ID: 34030266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerosol-Cloud-Precipitation Interactions in the Context of Convective Self-Aggregation.
    Beydoun H; Hoose C
    J Adv Model Earth Syst; 2019 Apr; 11(4):1066-1087. PubMed ID: 31244979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers.
    Rosenfeld D; Zheng Y; Hashimshoni E; Pöhlker ML; Jefferson A; Pöhlker C; Yu X; Zhu Y; Liu G; Yue Z; Fischman B; Li Z; Giguzin D; Goren T; Artaxo P; Barbosa HM; Pöschl U; Andreae MO
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5828-34. PubMed ID: 26944081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in the Hydrological Cycle and Sensitivity Between Multiscale Modeling Frameworks with and without a Higher-order Turbulence Closure.
    Xu KM; Li Z; Cheng A; Blossey PN; Stan C
    J Adv Model Earth Syst; 2017 Sep; 9(5):2120-2137. PubMed ID: 33868577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Entropy Generation Rate Model for Tropospheric Behavior That Includes Cloud Evolution.
    Sekhar JA
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of humidity above stratiform clouds on indirect aerosol climate forcing.
    Ackerman AS; Kirkpatrick MP; Stevens DE; Toon OB
    Nature; 2004 Dec; 432(7020):1014-7. PubMed ID: 15616559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model.
    Pathak R; Sahany S; Mishra SK
    Sci Rep; 2020 Oct; 10(1):17499. PubMed ID: 33060758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic.
    Zhang J; Zuidema P
    Atmos Chem Phys; 2019; 19(23):14493-14516. PubMed ID: 35069711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.