These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 28239489)

  • 1. Insights from molecular dynamics simulations for computational protein design.
    Childers MC; Daggett V
    Mol Syst Des Eng; 2017 Feb; 2(1):9-33. PubMed ID: 28239489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontiers in molecular dynamics simulations of DNA.
    Pérez A; Luque FJ; Orozco M
    Acc Chem Res; 2012 Feb; 45(2):196-205. PubMed ID: 21830782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
    Mou Y; Huang PS; Thomas LM; Mayo SL
    J Mol Biol; 2015 Aug; 427(16):2697-706. PubMed ID: 26101839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles.
    Childers MC; Daggett V
    J Phys Chem B; 2018 Jul; 122(26):6673-6689. PubMed ID: 29864281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation for rational protein engineering: Present and future prospectus.
    Rouhani M; Khodabakhsh F; Norouzian D; Cohan RA; Valizadeh V
    J Mol Graph Model; 2018 Sep; 84():43-53. PubMed ID: 29909273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability and dynamics of computationally designed proteins.
    Gonzalez NA; Li BA; McCully ME
    Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 35174855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Virtual Reality Visualization with Ensemble Molecular Dynamics to Study Complex Protein Conformational Changes.
    Juárez-Jiménez J; Tew P; O Connor M; Llabrés S; Sage R; Glowacki D; Michel J
    J Chem Inf Model; 2020 Dec; 60(12):6344-6354. PubMed ID: 33180485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balanced Amino-Acid-Specific Molecular Dynamics Force Field for the Realistic Simulation of Both Folded and Disordered Proteins.
    Yu L; Li DW; Brüschweiler R
    J Chem Theory Comput; 2020 Feb; 16(2):1311-1318. PubMed ID: 31877033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations and novel drug discovery.
    Liu X; Shi D; Zhou S; Liu H; Liu H; Yao X
    Expert Opin Drug Discov; 2018 Jan; 13(1):23-37. PubMed ID: 29139324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Tools and Methods in Molecular Dynamics (MD) Simulations for Drug Design.
    Hernández-Rodríguez M; Rosales-Hernández MC; Mendieta-Wejebe JE; Martínez-Archundia M; Basurto JC
    Curr Med Chem; 2016; 23(34):3909-3924. PubMed ID: 27237821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale molecular dynamics simulations of rotary motor proteins.
    Ekimoto T; Ikeguchi M
    Biophys Rev; 2018 Apr; 10(2):605-615. PubMed ID: 29204882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery.
    Li R; Macnamara LM; Leuchter JD; Alexander RW; Cho SS
    Int J Mol Sci; 2015 Jul; 16(7):15872-902. PubMed ID: 26184179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.