These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Cai F; Yu G; Wang P; Wei Z; Fu L; Shen Q; Chen W Plant Physiol Biochem; 2013 Dec; 73():106-13. PubMed ID: 24080397 [TBL] [Abstract][Full Text] [Related]
9. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. Alkooranee JT; Aledan TR; Ali AK; Lu G; Zhang X; Wu J; Fu C; Li M PLoS One; 2017; 12(1):e0168850. PubMed ID: 28045929 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. Du C; Jiang J; Zhang H; Zhao T; Yang H; Zhang D; Zhao Z; Xu X; Li J BMC Genomics; 2020 Mar; 21(1):250. PubMed ID: 32293256 [TBL] [Abstract][Full Text] [Related]
11. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. Chinnapandi B; Bucki P; Fitoussi N; Kolomiets M; Borrego E; Braun Miyara S Plant Signal Behav; 2019; 14(6):1601951. PubMed ID: 31010365 [TBL] [Abstract][Full Text] [Related]
12. Mi-1-mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. Mantelin S; Bhattarai KK; Jhaveri TZ; Kaloshian I PLoS One; 2013; 8(5):e63281. PubMed ID: 23717408 [TBL] [Abstract][Full Text] [Related]
13. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. MartÃnez-Medina A; Appels FVW; van Wees SCM Plant Signal Behav; 2017 Aug; 12(8):e1345404. PubMed ID: 28692334 [TBL] [Abstract][Full Text] [Related]
14. [The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919)]. Zinov'eva SV; Vasiukova NI; Udalova ZhV; Gerasimova NG Izv Akad Nauk Ser Biol; 2013; (3):332-40. PubMed ID: 24171314 [TBL] [Abstract][Full Text] [Related]
15. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Cooper WR; Jia L; Goggin L J Chem Ecol; 2005 Sep; 31(9):1953-67. PubMed ID: 16132206 [TBL] [Abstract][Full Text] [Related]
16. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Jogaiah S; Abdelrahman M; Tran LP; Ito SI Mol Plant Pathol; 2018 Apr; 19(4):870-882. PubMed ID: 28605157 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Zhao W; Zhou X; Lei H; Fan J; Yang R; Li Z; Hu C; Li M; Zhao F; Wang S Physiol Genomics; 2018 Mar; 50(3):197-207. PubMed ID: 29341868 [TBL] [Abstract][Full Text] [Related]
18. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM; Mehari ZH; Rav-David D; Elad Y Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252 [TBL] [Abstract][Full Text] [Related]
19. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. Yuan M; Huang Y; Ge W; Jia Z; Song S; Zhang L; Huang Y BMC Genomics; 2019 Feb; 20(1):144. PubMed ID: 30777003 [TBL] [Abstract][Full Text] [Related]
20. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Di X; Gomila J; Takken FLW Mol Plant Pathol; 2017 Sep; 18(7):1024-1035. PubMed ID: 28390170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]