These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28239986)

  • 1. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Transcriptome and Metabolic Analysis of
    Haile ZM; Malacarne G; Pilati S; Sonego P; Moretto M; Masuero D; Vrhovsek U; Engelen K; Baraldi E; Moser C
    Front Plant Sci; 2019; 10():1704. PubMed ID: 32082332
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea.
    Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P
    J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.
    Dadakova K; Havelkova M; Kurkova B; Tlolkova I; Kasparovsky T; Zdrahal Z; Lochman J
    J Proteomics; 2015 Apr; 119():143-53. PubMed ID: 25688916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.
    Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A
    J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance.
    Le Hénanff G; Profizi C; Courteaux B; Rabenoelina F; Gérard C; Clément C; Baillieul F; Cordelier S; Dhondt-Cordelier S
    J Exp Bot; 2013 Nov; 64(16):4877-93. PubMed ID: 24043850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.).
    Zhu Y; Li Y; Zhang S; Zhang X; Yao J; Luo Q; Sun F; Wang X
    Plant Biol (Stuttg); 2019 Jul; 21(4):571-584. PubMed ID: 30468551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine.
    Rossmann S; Richter R; Sun H; Schneeberger K; Töpfer R; Zyprian E; Theres K
    Plant J; 2020 Mar; 101(5):1234-1248. PubMed ID: 31663642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents.
    Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N
    Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea.
    Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM
    Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea.
    Aziz A; Heyraud A; Lambert B
    Planta; 2004 Mar; 218(5):767-74. PubMed ID: 14618326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays.
    Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP
    Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection.
    Zhu Y; Zhang X; Zhang Q; Chai S; Yin W; Gao M; Li Z; Wang X
    Mol Plant Pathol; 2022 Oct; 23(10):1415-1432. PubMed ID: 35822262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance.
    Xie X; Wang Y
    Planta; 2016 Nov; 244(5):1075-1094. PubMed ID: 27424038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.).
    Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E
    World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by
    Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A
    Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.