These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 28240184)

  • 41. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach.
    Hoffer L; Voitovich YV; Raux B; Carrasco K; Muller C; Fedorov AY; Derviaux C; Amouric A; Betzi S; Horvath D; Varnek A; Collette Y; Combes S; Roche P; Morelli X
    J Med Chem; 2018 Jul; 61(13):5719-5732. PubMed ID: 29883107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.
    Gozalbes R; Carbajo RJ; Pineda-Lucena A
    Curr Med Chem; 2010; 17(17):1769-94. PubMed ID: 20345344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fragment-based ligand discovery.
    Fischer M; Hubbard RE
    Mol Interv; 2009 Feb; 9(1):22-30. PubMed ID: 19299661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ligand specificity, privileged substructures and protein druggability from fragment-based screening.
    Barelier S; Krimm I
    Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Editorial: recent trends in library design and virtual screening in medicinal chemistry and drug discovery.
    Kumar BV; Sriram D; Yogeeswari P
    Curr Top Med Chem; 2014; 14(16):1865. PubMed ID: 25262807
    [No Abstract]   [Full Text] [Related]  

  • 46. The multiple roles of computational chemistry in fragment-based drug design.
    Law R; Barker O; Barker JJ; Hesterkamp T; Godemann R; Andersen O; Fryatt T; Courtney S; Hallett D; Whittaker M
    J Comput Aided Mol Des; 2009 Aug; 23(8):459-73. PubMed ID: 19533374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein X-ray Crystallography and Drug Discovery.
    Maveyraud L; Mourey L
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32106588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.
    Franzini RM; Neri D; Scheuermann J
    Acc Chem Res; 2014 Apr; 47(4):1247-55. PubMed ID: 24673190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening.
    Wollenhaupt J; Metz A; Barthel T; Lima GMA; Heine A; Mueller U; Klebe G; Weiss MS
    Structure; 2020 Jun; 28(6):694-706.e5. PubMed ID: 32413289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fragment informatics and computational fragment-based drug design: an overview and update.
    Sheng C; Zhang W
    Med Res Rev; 2013 May; 33(3):554-98. PubMed ID: 22430881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applied Biophysical Methods in Fragment-Based Drug Discovery.
    Coyle J; Walser R
    SLAS Discov; 2020 Jun; 25(5):471-490. PubMed ID: 32345095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing a diverse high-quality library for crystallography-based FBDD screening.
    Tounge BA; Parker MH
    Methods Enzymol; 2011; 493():3-20. PubMed ID: 21371585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies.
    Diethelm-Varela B
    ChemMedChem; 2021 Mar; 16(5):725-742. PubMed ID: 33236493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient search of chemical space: navigating from fragments to structurally diverse chemotypes.
    Wassermann AM; Kutchukian PS; Lounkine E; Luethi T; Hamon J; Bocker MT; Malik HA; Cowan-Jacob SW; Glick M
    J Med Chem; 2013 Nov; 56(21):8879-91. PubMed ID: 24117015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.
    Prescher H; Koch G; Schuhmann T; Ertl P; Bussenault A; Glick M; Dix I; Petersen F; Lizos DE
    Bioorg Med Chem; 2017 Feb; 25(3):921-925. PubMed ID: 28011199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In silico fragment-based drug design with SEED.
    Marchand JR; Caflisch A
    Eur J Med Chem; 2018 Aug; 156():907-917. PubMed ID: 30064119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.
    Humbeck L; Weigang S; Schäfer T; Mutzel P; Koch O
    ChemMedChem; 2018 Mar; 13(6):532-539. PubMed ID: 29392860
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Small-world phenomena in chemical library networks: application to fragment-based drug discovery.
    Tanaka N; Ohno K; Niimi T; Moritomo A; Mori K; Orita M
    J Chem Inf Model; 2009 Dec; 49(12):2677-86. PubMed ID: 19961207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in the design of a multipurpose fragment screening library.
    Wilde F; Link A
    Expert Opin Drug Discov; 2013 May; 8(5):597-606. PubMed ID: 23480068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Fragment-based drug discovery: concept and aim].
    Tanaka D
    Yakugaku Zasshi; 2010 Mar; 130(3):315-23. PubMed ID: 20190516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.