These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 28240230)

  • 21. Plasmon modes of circular cylindrical double-layer graphene.
    Zhao T; Hu M; Zhong R; Chen X; Zhang P; Gong S; Zhang C; Liu S
    Opt Express; 2016 Sep; 24(18):20461-71. PubMed ID: 27607651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene Nanoribbon Gap Waveguides for Dispersionless and Low-Loss Propagation with Deep-Subwavelength Confinement.
    Wu Z; Zhang L; Ning T; Su H; Li IL; Ruan S; Zeng YJ; Liang H
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
    Fei Z; Rodin AS; Andreev GO; Bao W; McLeod AS; Wagner M; Zhang LM; Zhao Z; Thiemens M; Dominguez G; Fogler MM; Castro Neto AH; Lau CN; Keilmann F; Basov DN
    Nature; 2012 Jul; 487(7405):82-5. PubMed ID: 22722866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure.
    Chen J; Wang P; Zhang ZM; Lu Y; Ming H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of graphene plasmons in graphene-MoS
    Liu R; Liao B; Guo X; Hu D; Hu H; Du L; Yu H; Zhang G; Yang X; Dai Q
    Nanoscale; 2017 Jan; 9(1):208-215. PubMed ID: 27906405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coexistence of two graphene-induced modulation effects on surface plasmons in hybrid graphene plasmonic nanostructures.
    Zhang ZY; Li DM; Zhang H; Wang W; Zhu YH; Zhang S; Zhang XP; Yi JM
    Opt Express; 2019 Apr; 27(9):13503-13515. PubMed ID: 31052871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene plasmonics: a platform for strong light-matter interactions.
    Koppens FH; Chang DE; García de Abajo FJ
    Nano Lett; 2011 Aug; 11(8):3370-7. PubMed ID: 21766812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmons and optical excitations in graphene rings.
    Wang W
    J Phys Condens Matter; 2012 Oct; 24(40):402202. PubMed ID: 22971520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopant-Induced Plasmon Decay in Graphene.
    Novko D
    Nano Lett; 2017 Nov; 17(11):6991-6996. PubMed ID: 28972379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene.
    Mason DR; Menabde SG; Park N
    Opt Express; 2014 Jan; 22(1):847-58. PubMed ID: 24515044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.
    Brar VW; Jang MS; Sherrott M; Lopez JJ; Atwater HA
    Nano Lett; 2013 Jun; 13(6):2541-7. PubMed ID: 23621616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of edge on graphene plasmons as revealed by infrared nanoimaging.
    Xu Q; Ma T; Danesh M; Shivananju BN; Gan S; Song J; Qiu CW; Cheng HM; Ren W; Bao Q
    Light Sci Appl; 2017 Feb; 6(2):e16204. PubMed ID: 30167226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
    Woessner A; Lundeberg MB; Gao Y; Principi A; Alonso-González P; Carrega M; Watanabe K; Taniguchi T; Vignale G; Polini M; Hone J; Hillenbrand R; Koppens FH
    Nat Mater; 2015 Apr; 14(4):421-5. PubMed ID: 25532073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.