BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28240333)

  • 1. Bonding-induced thermal transport enhancement across a hard/soft material interface using molecular monolayers.
    Yuan C; Huang M; Cheng Y; Luo X
    Phys Chem Chem Phys; 2017 Mar; 19(10):7352-7358. PubMed ID: 28240333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces.
    Zhang T; Gans-Forrest AR; Lee E; Zhang X; Qu C; Pang Y; Sun F; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33326-33334. PubMed ID: 27934170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.
    Zheng K; Sun F; Zhu J; Ma Y; Li X; Tang D; Wang F; Wang X
    ACS Nano; 2016 Aug; 10(8):7792-8. PubMed ID: 27501117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces.
    Sun F; Zhang T; Jobbins MM; Guo Z; Zhang X; Zheng Z; Tang D; Ptasinska S; Luo T
    Adv Mater; 2014 Sep; 26(35):6093-9. PubMed ID: 24841621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Soft/Hard Interface with High Adhesion Energy and Low Interfacial Thermal Resistance via Regulation of Interfacial Hydrogen Bonding Interaction.
    Zeng X; Liang T; Cheng X; Fan J; Pang Y; Xu J; Sun R; Xia X; Zeng X
    Nano Lett; 2024 May; 24(21):6386-6394. PubMed ID: 38743576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.
    Wang Y; Yang C; Pei QX; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weaker bonding can give larger thermal conductance at highly mismatched interfaces.
    Xu B; Hu S; Hung SW; Shao C; Chandra H; Chen FR; Kodama T; Shiomi J
    Sci Adv; 2021 Apr; 7(17):. PubMed ID: 33893088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States.
    Chen N; Yang K; Wang Z; Zhong B; Wang J; Song J; Li Q; Ni J; Sun F; Liu Y; Fan T
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34132-34144. PubMed ID: 37405384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers.
    O'Brien PJ; Shenogin S; Liu J; Chow PK; Laurencin D; Mutin PH; Yamaguchi M; Keblinski P; Ramanath G
    Nat Mater; 2013 Feb; 12(2):118-22. PubMed ID: 23160269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent bonding modulated graphene-metal interfacial thermal transport.
    Jiang T; Zhang X; Vishwanath S; Mu X; Kanzyuba V; Sokolov DA; Ptasinska S; Go DB; Xing HG; Luo T
    Nanoscale; 2016 Jun; 8(21):10993-1001. PubMed ID: 27174416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance.
    Zhang L; Liu L
    Nanoscale; 2019 Feb; 11(8):3656-3664. PubMed ID: 30741290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management.
    Lu J; Yuan K; Sun F; Zheng K; Zhang Z; Zhu J; Wang X; Zhang X; Zhuang Y; Ma Y; Cao X; Zhang J; Tang D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42708-42714. PubMed ID: 31625728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?
    Cheng X; He D; Zhou M; Zhang P; Wang S; Ren L; Sun R; Zeng X
    Nano Lett; 2023 Jul; 23(14):6673-6680. PubMed ID: 37428875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chemical bonding on heat transport across interfaces.
    Losego MD; Grady ME; Sottos NR; Cahill DG; Braun PV
    Nat Mater; 2012 Apr; 11(6):502-6. PubMed ID: 22522593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.