BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28240333)

  • 21. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of alloying elements on diamond/Cu interface properties based on first-principles calculations.
    Han J; Yang X; Ren Y; Li Y; Li Y; Li Z
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36538826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Microzone Structure Regulation of Diamond/Cu-B Composites for High Thermal Conductivity: Combining Experiments and First-Principles Calculations.
    Xie Z; Xiao W; Guo H; Xue B; Yang H; Zhang X; Huang S; Sun M; Xie H
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular self-assembled monolayers anomalously enhance thermal conductance across polymer-semiconductor interfaces.
    He J; Tao L; Xian W; Arbaugh T; Li Y
    Nanoscale; 2022 Dec; 14(47):17681-17693. PubMed ID: 36416469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced energy transport owing to nonlinear interface interaction.
    Su R; Yuan Z; Wang J; Zheng Z
    Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation.
    Ni B; Watanabe T; Phillpot SR
    J Phys Condens Matter; 2009 Feb; 21(8):084219. PubMed ID: 21817371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions.
    Majumdar S; Sierra-Suarez JA; Schiffres SN; Ong WL; Higgs CF; McGaughey AJ; Malen JA
    Nano Lett; 2015 May; 15(5):2985-91. PubMed ID: 25884912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment and prediction of thermal transport at solid-self-assembled monolayer junctions.
    Duda JC; Saltonstall CB; Norris PM; Hopkins PE
    J Chem Phys; 2011 Mar; 134(9):094704. PubMed ID: 21384994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interface energetics of self-assembled monolayers on metals.
    Heimel G; Romaner L; Zojer E; Bredas JL
    Acc Chem Res; 2008 Jun; 41(6):721-9. PubMed ID: 18507404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance.
    Wang S; Ren L; Han M; Zhou W; Wong C; Bai X; Sun R; Zeng X
    Nanoscale; 2023 May; 15(19):8706-8715. PubMed ID: 37009676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toughness governs the rupture of the interfacial H-bond assemblies at a critical length scale in hybrid materials.
    Sakhavand N; Muthuramalingam P; Shahsavari R
    Langmuir; 2013 Jun; 29(25):8154-63. PubMed ID: 23713817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent.
    Kikugawa G; Ohara T; Kawaguchi T; Torigoe E; Hagiwara Y; Matsumoto Y
    J Chem Phys; 2009 Feb; 130(7):074706. PubMed ID: 19239308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial Thermal Conductance between Cu and Diamond with Interconnected W-W
    Zhang Y; Wang Z; Li N; Che Z; Liu X; Chang G; Hao J; Dai J; Wang X; Sun F; Zhang H
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35215-35228. PubMed ID: 35878880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring Electrical Transport Across Metal-Thermoelectric Interfaces Using a Nanomolecular Monolayer.
    Cardinal T; Devender ; Borca-Tasciuc T; Ramanath G
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4275-9. PubMed ID: 26842392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.
    Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.