These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 28240598)

  • 1. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Yu Z; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2834-2844. PubMed ID: 36219654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3351-3354. PubMed ID: 33018722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.
    Marsh BT; Tarigoppula VS; Chen C; Francis JT
    J Neurosci; 2015 May; 35(19):7374-87. PubMed ID: 25972167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature extraction and unsupervised classification of neural population reward signals for reinforcement based BMI.
    Prins NW; Geng S; Pohlmeyer EA; Mahmoudi B; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5250-3. PubMed ID: 24110920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3365-8. PubMed ID: 19963795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 16. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1682-5. PubMed ID: 21096396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariant Cluster Transfer for Kernel Reinforcement Learning in Brain-Machine Interface.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3086-3089. PubMed ID: 33018657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.