BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 28240878)

  • 1. Quantifying Possible Routes for SpnF-Catalyzed Formal Diels-Alder Cycloaddition.
    Medvedev MG; Zeifman AA; Novikov FN; Bushmarinov IS; Stroganov OV; Titov IY; Chilov GG; Svitanko IV
    J Am Chem Soc; 2017 Mar; 139(11):3942-3945. PubMed ID: 28240878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition.
    Zheng Y; Thiel W
    J Org Chem; 2017 Dec; 82(24):13563-13571. PubMed ID: 29131960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the mechanism of the SpnF-catalyzed [4+2]-cycloaddition reaction in the biosynthesis of spinosyn A.
    Jeon BS; Ruszczycky MW; Russell WK; Lin GM; Kim N; Choi SH; Wang SA; Liu YN; Patrick JW; Russell DH; Liu HW
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10408-10413. PubMed ID: 28874588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal [6+4]/[4+2] cycloaddition.
    Yang Z; Yang S; Yu P; Li Y; Doubleday C; Park J; Patel A; Jeon BS; Russell WK; Liu HW; Russell DH; Houk KN
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E848-E855. PubMed ID: 29348209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A.
    Kim HJ; Ruszczycky MW; Choi SH; Liu YN; Liu HW
    Nature; 2011 May; 473(7345):109-12. PubMed ID: 21544146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Intermolecular Hetero-Diels-Alder Reaction in the Biosynthesis of Tropolonic Sesquiterpenes.
    Chen Q; Gao J; Jamieson C; Liu J; Ohashi M; Bai J; Yan D; Liu B; Che Y; Wang Y; Houk KN; Hu Y
    J Am Chem Soc; 2019 Sep; 141(36):14052-14056. PubMed ID: 31461283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery and investigation of natural Diels-Alderases.
    Watanabe K
    J Nat Med; 2021 Jun; 75(3):434-447. PubMed ID: 33683566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into Diels-Alder reactions in natural product biosynthesis.
    Hashimoto T; Kuzuyama T
    Curr Opin Chem Biol; 2016 Dec; 35():117-123. PubMed ID: 27697700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Catalytic Mechanism of a Natural Diels-Alderase Revealed in Molecular Detail.
    Byrne MJ; Lees NR; Han LC; van der Kamp MW; Mulholland AJ; Stach JE; Willis CL; Race PR
    J Am Chem Soc; 2016 May; 138(19):6095-8. PubMed ID: 27140661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NmrA-like enzyme-catalysed redox-mediated Diels-Alder cycloaddition with anti-selectivity.
    Liu Z; Rivera S; Newmister SA; Sanders JN; Nie Q; Liu S; Zhao F; Ferrara JD; Shih HW; Patil S; Xu W; Miller MD; Phillips GN; Houk KN; Sherman DH; Gao X
    Nat Chem; 2023 Apr; 15(4):526-534. PubMed ID: 36635598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Diels-Alderases: Elusive and Irresistable.
    Klas K; Tsukamoto S; Sherman DH; Williams RM
    J Org Chem; 2015 Dec; 80(23):11672-85. PubMed ID: 26495876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoenzymatic Total Syntheses of Artonin I with an Intermolecular Diels-Alderase.
    Liu X; Yang J; Gao L; Zhang L; Lei X
    Biotechnol J; 2020 Nov; 15(11):e2000119. PubMed ID: 33002294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity of decalin forming Diels-Alderase.
    Sato M
    Biosci Biotechnol Biochem; 2024 Jun; 88(7):719-726. PubMed ID: 38758077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diels-Alderase-free, bis-pericyclic, [4+2] dimerization in the biosynthesis of (±)-paracaseolide A.
    Wang T; Hoye TR
    Nat Chem; 2015 Aug; 7(8):641-5. PubMed ID: 26201740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerted, highly asynchronous, enzyme-catalyzed [4 + 2] cycloaddition in the biosynthesis of spinosyn A; computational evidence.
    Hess BA; Smentek L
    Org Biomol Chem; 2012 Oct; 10(37):7503-9. PubMed ID: 22885939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aza Diels-Alder Reactions of Nitriles, N,N-Dimethylhydrazones, and Oximino Ethers. Application in Formal [2 + 2 + 2] Cycloadditions for the Synthesis of Pyridines.
    Hamzik PJ; Goutierre AS; Sakai T; Danheiser RL
    J Org Chem; 2017 Dec; 82(24):12975-12991. PubMed ID: 29193963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-Catalyzed Inverse-Electron Demand Diels-Alder Reaction in the Biosynthesis of Antifungal Ilicicolin H.
    Zhang Z; Jamieson CS; Zhao YL; Li D; Ohashi M; Houk KN; Tang Y
    J Am Chem Soc; 2019 Apr; 141(14):5659-5663. PubMed ID: 30905148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition.
    Fage CD; Isiorho EA; Liu Y; Wagner DT; Liu HW; Keatinge-Clay AT
    Nat Chem Biol; 2015 Apr; 11(4):256-8. PubMed ID: 25730549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase.
    Ose T; Watanabe K; Mie T; Honma M; Watanabe H; Yao M; Oikawa H; Tanaka I
    Nature; 2003 Mar; 422(6928):185-9. PubMed ID: 12634789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.