BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28241276)

  • 1. Theoretical model of blood flow measurement by diffuse correlation spectroscopy.
    Sakadžic S; Boas DA; Carp S
    J Biomed Opt; 2017 Feb; 22(2):27006. PubMed ID: 28241276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
    Boas DA; Sakadžić S; Selb J; Farzam P; Franceschini MA; Carp SA
    Neurophotonics; 2016 Jul; 3(3):031412. PubMed ID: 27335889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of the correlation diffusion equation with static background and analytical solutions.
    Binzoni T; Liemert A; Kienle A; Martelli F
    Appl Opt; 2017 Feb; 56(4):795-801. PubMed ID: 28158078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A study on blood flow measurement by diffuse correlation spectroscopy].
    Liang JM; Wang J; Mei JS; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2749-52. PubMed ID: 23285880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling.
    Wu MM; Chan ST; Mazumder D; Tamborini D; Stephens KA; Deng B; Farzam P; Chu JY; Franceschini MA; Qu JZ; Carp SA
    Neurophotonics; 2021 Jan; 8(1):015001. PubMed ID: 33437846
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS).
    Robinson MB; Carp SA; Peruch A; Boas DA; Franceschini MA; Sakadžić S
    Biomed Opt Express; 2020 Jun; 11(6):3071-3090. PubMed ID: 32637242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function.
    Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA
    Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of diffuse correlation spectroscopy flow index by integration of
    Shang Y; Li T; Chen L; Lin Y; Toborek M; Yu G
    Appl Phys Lett; 2014 May; 104(19):193703. PubMed ID: 24926099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.
    Tang J; Erdener SE; Li B; Fu B; Sakadzic S; Carp SA; Lee J; Boas DA
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusing wave spectroscopy used to study the influence of shear on aggregation.
    Ruis HG; Venema P; Linden Ev
    Langmuir; 2008 Jul; 24(14):7117-23. PubMed ID: 18547085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic light scattering Monte Carlo: a method for simulating time-varying dynamics for ordered motion in heterogeneous media.
    Davis MA; Dunn AK
    Opt Express; 2015 Jun; 23(13):17145-55. PubMed ID: 26191723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media.
    Li J; Qiu L; Poon CS; Sunar U
    Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo.
    Samaei S; Sawosz P; Kacprzak M; Pastuszak Ż; Borycki D; Liebert A
    Sci Rep; 2021 Jan; 11(1):1817. PubMed ID: 33469124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the reliability of diffuse correlation spectroscopy models on noise-free analytical Monte Carlo data.
    Binzoni T; Martelli F
    Appl Opt; 2015 Jun; 54(17):5320-6. PubMed ID: 26192830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer.
    Jaillon F; Skipetrov SE; Li J; Dietsche G; Maret G; Gisler T
    Opt Express; 2006 Oct; 14(22):10181-94. PubMed ID: 19529414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring neuronal activity with diffuse correlation spectroscopy: a theoretical investigation.
    Cheng X; Sie EJ; Naufel S; Boas DA; Marsili F
    Neurophotonics; 2021 Jul; 8(3):035004. PubMed ID: 34368390
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.