BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28241491)

  • 1. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.
    Dabrzalska M; Janaszewska A; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Molecules; 2017 Feb; 22(3):. PubMed ID: 28241491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer.
    Sztandera K; Marcinkowska M; Gorzkiewicz M; Janaszewska A; Laurent R; Zabłocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32585884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.
    Dabrzalska M; Janaszewska A; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Mol Pharm; 2017 May; 14(5):1821-1830. PubMed ID: 28350966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.
    Dabrzalska M; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Int J Pharm; 2015 Aug; 492(1-2):266-74. PubMed ID: 26117192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncovalent Interactions with PAMAM and PPI Dendrimers Promote the Cellular Uptake and Photodynamic Activity of Rose Bengal: The Role of the Dendrimer Structure.
    Sztandera K; Gorzkiewicz M; Dias Martins AS; Pallante L; Zizzi EA; Miceli M; Ba Tal M; Reis CP; Deriu MA; Klajnert-Maculewicz B
    J Med Chem; 2021 Nov; 64(21):15758-15771. PubMed ID: 34546755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers.
    Dabrzalska M; Benseny-Cases N; Barnadas-Rodríguez R; Mignani S; Zablocka M; Majoral JP; Bryszewska M; Klajnert-Maculewicz B; Cladera J
    Anal Bioanal Chem; 2016 Jan; 408(2):535-44. PubMed ID: 26507333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms.
    Tang W; Xu H; Kopelman R; Philbert MA
    Photochem Photobiol; 2005; 81(2):242-9. PubMed ID: 15595888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylene blue-mediated Photodynamic Therapy in human retinoblastoma cell lines.
    Turchiello RF; Oliveira CS; Fernandes AU; Gómez SL; Baptista MS
    J Photochem Photobiol B; 2021 Sep; 222():112260. PubMed ID: 34304071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy.
    Kim KR; Bang D; Ahn DR
    Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy.
    Hah HJ; Kim G; Lee YE; Orringer DA; Sagher O; Philbert MA; Kopelman R
    Macromol Biosci; 2011 Jan; 11(1):90-9. PubMed ID: 20976722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydopamine-Coated Liposomes for Methylene Blue Delivery in Anticancer Photodynamic Therapy: Effects in 2D and 3D Cellular Models.
    De Leo V; Marras E; Maurelli AM; Catucci L; Milano F; Gariboldi MB
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue.
    Hosseinzadeh R; Khorsandi K; Jahanshiri M
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():198-203. PubMed ID: 28499173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles.
    Seong DY; Kim YJ
    J Photochem Photobiol B; 2015 May; 146():34-43. PubMed ID: 25794464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photodynamic therapy and effective elimination of cancer stem cells using surfactant-polymer nanoparticles.
    Usacheva M; Swaminathan SK; Kirtane AR; Panyam J
    Mol Pharm; 2014 Sep; 11(9):3186-95. PubMed ID: 25061685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells.
    Hosseinzadeh R; Khorsandi K
    Sci Rep; 2019 Oct; 9(1):14899. PubMed ID: 31624290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics.
    Ding TS; Huang XC; Luo YL; Hsu HY
    Colloids Surf B Biointerfaces; 2015 Nov; 135():217-224. PubMed ID: 26255165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells.
    Ma M; Cheng L; Zhao A; Zhang H; Zhang A
    Photodiagnosis Photodyn Ther; 2020 Mar; 29():101640. PubMed ID: 31899381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide-methylene blue nanocomposite in photodynamic therapy of human breast cancer.
    Hosseinzadeh R; Khorsandi K; Hosseinzadeh G
    J Biomol Struct Dyn; 2018 Jul; 36(9):2216-2223. PubMed ID: 28681663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscaled PAMAM Dendrimer Spacer Improved the Photothermal-Photodynamic Treatment Efficiency of Photosensitizer-Decorated Confeito-Like Gold Nanoparticles for Cancer Therapy.
    Saw WS; Anasamy T; Do TTA; Lee HB; Chee CF; Isci U; Misran M; Dumoulin F; Chong WY; Kiew LV; Imae T; Chung LY
    Macromol Biosci; 2022 Aug; 22(8):e2200130. PubMed ID: 35579182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.