These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Resonators with a continuously variable output coupling rate to enhance output performance of Yb:YAG thin-disk lasers. Dai L; Liu R; Gong F; Li X; Lei X; Zheng L; Deng S; Lv Q; Sun T; Teng F; Li G; Jin Y Opt Express; 2022 Oct; 30(22):40739-40749. PubMed ID: 36299003 [TBL] [Abstract][Full Text] [Related]
6. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality. Nagel S; Metzger B; Bauer D; Dominik J; Gottwald T; Kuhn V; Killi A; Dekorsy T; Schad SS Opt Lett; 2021 Mar; 46(5):965-968. PubMed ID: 33649632 [TBL] [Abstract][Full Text] [Related]
8. Influence of disk aberrations on high-power thin-disk laser cavities. Seidel M; Lang L; Phillips CR; Keller U Opt Express; 2022 Oct; 30(22):39691-39705. PubMed ID: 36298915 [TBL] [Abstract][Full Text] [Related]
9. Axicon based conical resonators with high power copper vapor laser. Singh B; Subramaniam VV; Daultabad SR; Chakraborty A Rev Sci Instrum; 2010 Jul; 81(7):073110. PubMed ID: 20687708 [TBL] [Abstract][Full Text] [Related]
10. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors. Sutter JP; Alcock SG; Kashyap Y; Nistea I; Wang H; Sawhney K J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1333-1347. PubMed ID: 27787239 [TBL] [Abstract][Full Text] [Related]
12. Linearly polarized, narrow-linewidth, and tunable Yb:YAG thin-disk laser. Rumpel M; Voss A; Moeller M; Habel F; Moormann C; Schacht M; Graf T; Ahmed MA Opt Lett; 2012 Oct; 37(20):4188-90. PubMed ID: 23073406 [TBL] [Abstract][Full Text] [Related]
13. High-power radially polarized Yb:YAG thin-disk laser with high efficiency. Ahmed MA; Haefner M; Vogel M; Pruss C; Voss A; Osten W; Graf T Opt Express; 2011 Mar; 19(6):5093-104. PubMed ID: 21445144 [TBL] [Abstract][Full Text] [Related]
14. Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica. Wlodarczyk KL; Thomson IJ; Baker HJ; Hall DR Appl Opt; 2012 Sep; 51(26):6352-60. PubMed ID: 22968274 [TBL] [Abstract][Full Text] [Related]
15. 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Aus der Au J; Spühler GJ; Südmeyer T; Paschotta R; Hövel R; Moser M; Erhard S; Karszewski M; Giesen A; Keller U Opt Lett; 2000 Jun; 25(11):859-61. PubMed ID: 18064208 [TBL] [Abstract][Full Text] [Related]
16. A ray analysis of optical resonators formed by two spherical mirrors. Ramsay IA; Degnan JJ Appl Opt; 1970 Feb; 9(2):385-98. PubMed ID: 20076200 [TBL] [Abstract][Full Text] [Related]
17. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser. Saltarelli F; Graumann IJ; Lang L; Bauer D; Phillips CR; Keller U Opt Express; 2019 Oct; 27(22):31465-31474. PubMed ID: 31684382 [TBL] [Abstract][Full Text] [Related]
18. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror. Spiridonov M; Toebaert D Appl Opt; 2006 Sep; 45(26):6805-11. PubMed ID: 16926916 [TBL] [Abstract][Full Text] [Related]
19. Composite Yb:YAG/SiC-prism thin disk laser. Newburgh GA; Michael A; Dubinskii M Opt Express; 2010 Aug; 18(16):17066-74. PubMed ID: 20721095 [TBL] [Abstract][Full Text] [Related]
20. Bessel beam generation using a segmented deformable mirror. Yu X; Todi A; Tang H Appl Opt; 2018 Jun; 57(16):4677-4682. PubMed ID: 29877377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]