These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 28241760)

  • 1. Early recognition of multiple sclerosis using natural language processing of the electronic health record.
    Chase HS; Mitrani LR; Lu GG; Fulgieri DJ
    BMC Med Inform Decis Mak; 2017 Feb; 17(1):24. PubMed ID: 28241760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining Multiple Sclerosis Phenotype from Electronic Medical Records.
    Nelson RE; Butler J; LaFleur J; Knippenberg K; C Kamauu AW; DuVall SL
    J Manag Care Spec Pharm; 2016 Dec; 22(12):1377-1382. PubMed ID: 27882837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Patients With Relapsing-Remitting Multiple Sclerosis Using Algorithms Applied to US Integrated Delivery Network Healthcare Data.
    Van Le H; Le Truong CT; Kamauu AWC; Holmén J; Fillmore C; Kobayashi MG; Martin C; Sabidó M; Wong SL
    Value Health; 2019 Jan; 22(1):77-84. PubMed ID: 30661637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals.
    Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC
    J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Word2Vec inversion and traditional text classifiers for phenotyping lupus.
    Turner CA; Jacobs AD; Marques CK; Oates JC; Kamen DL; Anderson PE; Obeid JS
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):126. PubMed ID: 28830409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models.
    Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA
    Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building a Natural Language Processing Tool to Identify Patients With High Clinical Suspicion for Kawasaki Disease from Emergency Department Notes.
    Doan S; Maehara CK; Chaparro JD; Lu S; Liu R; Graham A; Berry E; Hsu CN; Kanegaye JT; Lloyd DD; Ohno-Machado L; Burns JC; Tremoulet AH;
    Acad Emerg Med; 2016 May; 23(5):628-36. PubMed ID: 26826020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A natural language processing and deep learning approach to identify child abuse from pediatric electronic medical records.
    Annapragada AV; Donaruma-Kwoh MM; Annapragada AV; Starosolski ZA
    PLoS One; 2021; 16(2):e0247404. PubMed ID: 33635890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.
    Chen J; Yu H
    J Biomed Inform; 2017 Apr; 68():121-131. PubMed ID: 28267590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an automated phenotyping algorithm for hepatorenal syndrome.
    Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME
    J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitating clinical research through automation: Combining optical character recognition with natural language processing.
    Hom J; Nikowitz J; Ottesen R; Niland JC
    Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The association of timing of disease-modifying drug initiation and relapse in patients with multiple sclerosis using electronic health records.
    Corvino FA; Oliveri D; Phillips AL
    Curr Med Res Opin; 2017 Jun; 33(6):1127-1132. PubMed ID: 28318337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prevalence of problem opioid use in patients receiving chronic opioid therapy: computer-assisted review of electronic health record clinical notes.
    Palmer RE; Carrell DS; Cronkite D; Saunders K; Gross DE; Masters E; Donevan S; Hylan TR; Von Kroff M
    Pain; 2015 Jul; 156(7):1208-1214. PubMed ID: 25760471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.