BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28241858)

  • 1. Machine learning identifies a compact gene set for monitoring the circadian clock in human blood.
    Hughey JJ
    Genome Med; 2017 Feb; 9(1):19. PubMed ID: 28241858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory conflict disrupts circadian rhythms in the sea anemone
    Berger CA; Tarrant AM
    Elife; 2023 Apr; 12():. PubMed ID: 37022138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A population-based gene expression signature of molecular clock phase from a single epidermal sample.
    Wu G; Ruben MD; Francey LJ; Smith DF; Sherrill JD; Oblong JE; Mills KJ; Hogenesch JB
    Genome Med; 2020 Aug; 12(1):73. PubMed ID: 32825850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system.
    Hughey JJ; Hastie T; Butte AJ
    Nucleic Acids Res; 2016 May; 44(8):e80. PubMed ID: 26819407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T
    de Assis LVM; Harder L; Lacerda JT; Parsons R; Kaehler M; Cascorbi I; Nagel I; Rawashdeh O; Mittag J; Oster H
    Elife; 2022 Jul; 11():. PubMed ID: 35894384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily rhythms in gene expression of the human parasite Schistosoma mansoni.
    Rawlinson KA; Reid AJ; Lu Z; Driguez P; Wawer A; Coghlan A; Sankaranarayanan G; Buddenborg SK; Soria CD; McCarthy C; Holroyd N; Sanders M; Hoffmann KF; Wilcockson D; Rinaldi G; Berriman M
    BMC Biol; 2021 Dec; 19(1):255. PubMed ID: 34852797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal method for robust detection of circadian state from gene expression.
    Braun R; Kath WL; Iwanaszko M; Kula-Eversole E; Abbott SM; Reid KJ; Zee PC; Allada R
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):E9247-E9256. PubMed ID: 30201705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.
    Hoekstra MM; Jan M; Katsioudi G; Emmenegger Y; Franken P
    Elife; 2021 Dec; 10():. PubMed ID: 34895464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.
    Lech K; Ackermann K; Revell VL; Lao O; Skene DJ; Kayser M
    J Biol Rhythms; 2016 Feb; 31(1):68-81. PubMed ID: 26527095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms.
    Weger BD; Gobet C; David FPA; Atger F; Martin E; Phillips NE; Charpagne A; Weger M; Naef F; Gachon F
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33452134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What time is it? Deep learning approaches for circadian rhythms.
    Agostinelli F; Ceglia N; Shahbaba B; Sassone-Corsi P; Baldi P
    Bioinformatics; 2016 Jun; 32(12):i8-i17. PubMed ID: 27307647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TimeTeller: A tool to probe the circadian clock as a multigene dynamical system.
    Vlachou D; Veretennikova M; Usselmann L; Vasilyev V; Ott S; Bjarnason GA; Dallmann R; Levi F; Rand DA
    PLoS Comput Biol; 2024 Feb; 20(2):e1011779. PubMed ID: 38422117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model learning to identify systemic regulators of the peripheral circadian clock.
    Martinelli J; Dulong S; Li XM; Teboul M; Soliman S; Lévi F; Fages F; Ballesta A
    Bioinformatics; 2021 Jul; 37(Suppl_1):i401-i409. PubMed ID: 34252929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and expression analyses reveal circadian clock features predictive of anxiety.
    Zafar A; Overton R; Attia Z; Ay A; Ingram K
    Sci Rep; 2022 Apr; 12(1):5508. PubMed ID: 35365695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated evolution of circadian clock dysregulation in cavefish populations.
    Mack KL; Jaggard JB; Persons JL; Roback EY; Passow CN; Stanhope BA; Ferrufino E; Tsuchiya D; Smith SE; Slaughter BD; Kowalko J; Rohner N; Keene AC; McGaugh SE
    PLoS Genet; 2021 Jul; 17(7):e1009642. PubMed ID: 34252077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronopharmacological strategies focused on chrono-drug discovery.
    Ohdo S; Koyanagi S; Matsunaga N
    Pharmacol Ther; 2019 Oct; 202():72-90. PubMed ID: 31173839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian mechanisms of food anticipatory rhythms in rats fed once or twice daily: clock gene and endocrine correlates.
    Patton DF; Katsuyama AM; Pavlovski I; Michalik M; Patterson Z; Parfyonov M; Smit AN; Marchant EG; Chung SH; Abizaid A; Storch KF; de la Iglesia H; Mistlberger RE
    PLoS One; 2014; 9(12):e112451. PubMed ID: 25502949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entrainment of the human circadian clock to the natural light-dark cycle.
    Wright KP; McHill AW; Birks BR; Griffin BR; Rusterholz T; Chinoy ED
    Curr Biol; 2013 Aug; 23(16):1554-8. PubMed ID: 23910656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Phase-Shifting Effect of Bright Light Exposure on Circadian Rhythmicity in the Human Transcriptome.
    Kervezee L; Cuesta M; Cermakian N; Boivin DB
    J Biol Rhythms; 2019 Feb; 34(1):84-97. PubMed ID: 30621487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time, in vivo measurement of neuronal and peripheral clocks in
    Johnstone PS; Ogueta M; Akay O; Top I; Syed S; Stanewsky R; Top D
    Elife; 2022 Oct; 11():. PubMed ID: 36190119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.