These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28241862)
1. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. Singh D; Singh CK; Taunk J; Tomar RS; Chaturvedi AK; Gaikwad K; Pal M BMC Genomics; 2017 Feb; 18(1):206. PubMed ID: 28241862 [TBL] [Abstract][Full Text] [Related]
2. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Singh D; Singh CK; Taunk J; Jadon V; Pal M; Gaikwad K Sci Rep; 2019 Sep; 9(1):12976. PubMed ID: 31506558 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome skimming of lentil (Lens culinaris Medikus) cultivars with contrast reaction to salt stress. Singh D; Singh CK; Taunk J; Sharma S; Gaikwad K; Singh V; Sanwal SK; Singh D; Sharma PC; Pal M Funct Integr Genomics; 2021 Jan; 21(1):139-156. PubMed ID: 33389259 [TBL] [Abstract][Full Text] [Related]
4. Linking genome wide RNA sequencing with physio-biochemical and cytological responses to catalogue key genes and metabolic pathways for alkalinity stress tolerance in lentil (Lens culinaris Medikus). Singh D; Singh CK; Taunk J; Gaikwad K; Singh V; Sanwal SK; Karwa S; Singh D; Sharma PC; Yadav RK; Pal M BMC Plant Biol; 2022 Mar; 22(1):99. PubMed ID: 35247970 [TBL] [Abstract][Full Text] [Related]
5. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Morgil H; Tardu M; Cevahir G; Kavakli İH Funct Integr Genomics; 2019 Sep; 19(5):715-727. PubMed ID: 31001704 [TBL] [Abstract][Full Text] [Related]
6. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers. Singh D; Singh CK; Tomar RS; Taunk J; Singh R; Maurya S; Chaturvedi AK; Pal M; Singh R; Dubey SK PLoS One; 2016; 11(1):e0147213. PubMed ID: 26808306 [TBL] [Abstract][Full Text] [Related]
7. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis. Biju S; Fuentes S; Gupta D BMC Plant Biol; 2023 Oct; 23(1):498. PubMed ID: 37848813 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224 [TBL] [Abstract][Full Text] [Related]
9. Silicon modulates nitro-oxidative homeostasis along with the antioxidant metabolism to promote drought stress tolerance in lentil plants. Biju S; Fuentes S; Gupta D Physiol Plant; 2021 Jun; 172(2):1382-1398. PubMed ID: 33887059 [TBL] [Abstract][Full Text] [Related]
10. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Biju S; Fuentes S; Gupta D Plant Physiol Biochem; 2018 Jun; 127():11-24. PubMed ID: 29544209 [TBL] [Abstract][Full Text] [Related]
11. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. Li S; Fan C; Li Y; Zhang J; Sun J; Chen Y; Tian C; Su X; Lu M; Liang C; Hu Z BMC Genomics; 2016 Mar; 17():200. PubMed ID: 26951633 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Zhang J; Huang D; Zhao X; Zhang M Sci Rep; 2021 Aug; 11(1):16308. PubMed ID: 34381085 [TBL] [Abstract][Full Text] [Related]
13. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Muscolo A; Junker A; Klukas C; Weigelt-Fischer K; Riewe D; Altmann T J Exp Bot; 2015 Sep; 66(18):5467-80. PubMed ID: 25969553 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome expression profiles reveal response mechanisms to drought and drought-stress mitigation mechanisms by exogenous glycine betaine in maize. Bai M; Zeng W; Chen F; Ji X; Zhuang Z; Jin B; Wang J; Jia L; Peng Y Biotechnol Lett; 2022 Mar; 44(3):367-386. PubMed ID: 35294695 [TBL] [Abstract][Full Text] [Related]
17. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Biju S; Fuentes S; Gupta D Plant Physiol Biochem; 2017 Oct; 119():250-264. PubMed ID: 28917144 [TBL] [Abstract][Full Text] [Related]
18. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Sehgal A; Sita K; Bhandari K; Kumar S; Kumar J; Vara Prasad PV; Siddique KHM; Nayyar H Plant Cell Environ; 2019 Jan; 42(1):198-211. PubMed ID: 29744880 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
20. Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress. Kumar S; Ayachit G; Sahoo L Plant Physiol Biochem; 2020 Dec; 157():229-238. PubMed ID: 33129069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]