These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A Protocol for Decellularizing Mouse Cochleae for Inner Ear Tissue Engineering. Neal CA; Nelson-Brantley JG; Detamore MS; Staecker H; Mellott AJ J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364256 [TBL] [Abstract][Full Text] [Related]
4. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Dan P; Velot É; Francius G; Menu P; Decot V Acta Biomater; 2017 Jan; 48():227-237. PubMed ID: 27769940 [TBL] [Abstract][Full Text] [Related]
5. Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. Kehtari M; Beiki B; Zeynali B; Hosseini FS; Soleimanifar F; Kaabi M; Soleimani M; Enderami SE; Kabiri M; Mahboudi H J Cell Biochem; 2019 Apr; 120(4):6683-6697. PubMed ID: 30417406 [TBL] [Abstract][Full Text] [Related]
6. Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering. Zhang L; Zhao YH; Guan Z; Ye JS; de Isla N; Stoltz JF Biomed Mater Eng; 2015; 25(1 Suppl):137-43. PubMed ID: 25538064 [TBL] [Abstract][Full Text] [Related]
7. Decellularized Wharton's Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications. Jadalannagari S; Converse G; McFall C; Buse E; Filla M; Villar MT; Artigues A; Mellot AJ; Wang J; Detamore MS; Hopkins RA; Aljitawi OS PLoS One; 2017; 12(2):e0172098. PubMed ID: 28222169 [TBL] [Abstract][Full Text] [Related]
8. 3D Decellularized Native Extracellular Matrix Scaffold for In Vitro Culture Expansion of Human Wharton's Jelly-Derived Mesenchymal Stem Cells (hWJ MSCs). Sundaram B; Cherian AG; Kumar S Methods Mol Biol; 2018; 1577():35-53. PubMed ID: 28963712 [TBL] [Abstract][Full Text] [Related]
9. Recellularization potential assessment of Wharton's Jelly-derived endothelial progenitor cells using a human fetal vascular tissue model. Constantinescu A; Andrei E; Iordache F; Constantinescu E; Maniu H In Vitro Cell Dev Biol Anim; 2014 Dec; 50(10):937-44. PubMed ID: 25124869 [TBL] [Abstract][Full Text] [Related]
10. Decellularized ear tissues as scaffolds for stem cell differentiation. Santi PA; Johnson SB J Assoc Res Otolaryngol; 2013 Feb; 14(1):3-15. PubMed ID: 23085833 [TBL] [Abstract][Full Text] [Related]
12. The Use of Human Wharton's Jelly Cells for Cochlear Tissue Engineering. Mellott AJ; Detamore MS; Staecker H Methods Mol Biol; 2016; 1427():319-45. PubMed ID: 27259936 [TBL] [Abstract][Full Text] [Related]
13. [In vitro evaluation of chondrocytes combined with Wharton's jelly of human umbilical cord oriented scaffold]. Lü H; Xu G; Gai Y; Chen L; Liu S; Zhao P; Lu S; Zhang L; Quanyi G; Yang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Aug; 28(8):1017-22. PubMed ID: 25417319 [TBL] [Abstract][Full Text] [Related]
14. Ex vivo and in vivo modulatory effects of umbilical cord Wharton's jelly stem cells on human oral mucosa stroma substitutes. Alfonso-Rodríguez CA; González-Andrades E; Jaimes-Parra BD; Fernández-Valadés R; Campos A; Sánchez-Quevedo MC; Alaminos M; Garzón I Histol Histopathol; 2015 Nov; 30(11):1321-32. PubMed ID: 25967581 [TBL] [Abstract][Full Text] [Related]
15. Decellularization of Whole Human Liver Grafts Using Controlled Perfusion for Transplantable Organ Bioscaffolds. Verstegen MMA; Willemse J; van den Hoek S; Kremers GJ; Luider TM; van Huizen NA; Willemssen FEJA; Metselaar HJ; IJzermans JNM; van der Laan LJW; de Jonge J Stem Cells Dev; 2017 Sep; 26(18):1304-1315. PubMed ID: 28665233 [TBL] [Abstract][Full Text] [Related]
16. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Baiguera S; Del Gaudio C; Lucatelli E; Kuevda E; Boieri M; Mazzanti B; Bianco A; Macchiarini P Biomaterials; 2014 Jan; 35(4):1205-14. PubMed ID: 24215734 [TBL] [Abstract][Full Text] [Related]
17. Human umbilical cord Wharton's jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Zhang Y; Liu S; Guo W; Wang M; Hao C; Gao S; Zhang X; Li X; Chen M; Jing X; Wang Z; Peng J; Lu S; Guo Q Osteoarthritis Cartilage; 2018 Jul; 26(7):954-965. PubMed ID: 29391278 [TBL] [Abstract][Full Text] [Related]
18. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919 [TBL] [Abstract][Full Text] [Related]
19. A biocompatible decellularized pulp scaffold for regenerative endodontics. Matoug-Elwerfelli M; Duggal MS; Nazzal H; Esteves F; Raïf E Int Endod J; 2018 Jun; 51(6):663-673. PubMed ID: 29197101 [TBL] [Abstract][Full Text] [Related]
20. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. Bagher Z; Ebrahimi-Barough S; Azami M; Safa M; Joghataei MT J Biomed Mater Res A; 2016 Jan; 104(1):218-26. PubMed ID: 26265047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]