BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28242223)

  • 1. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation.
    Sangok FE; Maie N; Melling L; Watanabe A
    Sci Total Environ; 2017 Jun; 587-588():381-388. PubMed ID: 28242223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil CO
    Busman NA; Melling L; Goh KJ; Imran Y; Sangok FE; Watanabe A
    Sci Total Environ; 2023 Feb; 858(Pt 2):159973. PubMed ID: 36347298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking prokaryotic community composition to carbon biogeochemical cycling across a tropical peat dome in Sarawak, Malaysia.
    Dom SP; Ikenaga M; Lau SYL; Radu S; Midot F; Yap ML; Chin MY; Lo ML; Jee MS; Maie N; Melling L
    Sci Rep; 2021 Mar; 11(1):6416. PubMed ID: 33742002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dataset on soil carbon dioxide fluxes from an incubation with tropical peat from three different land-uses in Jambi Sumatra Indonesia.
    Comeau LP; Hergoualc'h K; Verchot LV
    Data Brief; 2021 Dec; 39():107597. PubMed ID: 34901339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands.
    Hoyos-Santillan J; Lomax BH; Large D; Turner BL; Lopez OR; Boom A; Sepulveda-Jauregui A; Sjögersten S
    Sci Total Environ; 2019 Oct; 688():1193-1204. PubMed ID: 31726550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation.
    Cooper HV; Evers S; Aplin P; Crout N; Dahalan MPB; Sjogersten S
    Nat Commun; 2020 Jan; 11(1):407. PubMed ID: 31964892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions.
    Anamulai S; Sanusi R; Zubaid A; Lechner AM; Ashton-Butt A; Azhar B
    PeerJ; 2019; 7():e7656. PubMed ID: 31632845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variability of soil N
    Hergoualc'h K; Dezzeo N; Verchot LV; Martius C; van Lent J; Del Aguila-Pasquel J; López Gonzales M
    Glob Chang Biol; 2020 Dec; 26(12):7198-7216. PubMed ID: 32949077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.
    Guillaume T; Damris M; Kuzyakov Y
    Glob Chang Biol; 2015 Sep; 21(9):3548-60. PubMed ID: 25707391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.
    Shuhada SN; Salim S; Nobilly F; Zubaid A; Azhar B
    Ecol Evol; 2017 Sep; 7(18):7187-7200. PubMed ID: 28944010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest.
    McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T
    Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia.
    Kusin FM; Akhir NIM; Mohamat-Yusuff F; Awang M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5293-5304. PubMed ID: 28004372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH
    Lupascu M; Akhtar H; Smith TEL; Sukri RS
    Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods.
    Lewis K; Rumpang E; Kho LK; McCalmont J; Teh YA; Gallego-Sala A; Hill TC
    Sci Rep; 2020 Feb; 10(1):2230. PubMed ID: 32041975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Peat Swamp Forest Patches and Riparian Areas within Large Scale Oil Palm Plantations on Bird Species Richness.
    Amit B; Klok WR; Van Der Meer PJ; Khairuddin NSK; Yaman IC; Khoon KL
    Trop Life Sci Res; 2023 Jun; 34(2):131-160. PubMed ID: 38144373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolved N
    Nishina K; Melling L; Toyoda S; Itoh M; Terajima K; Waili JWB; Wong GX; Kiew F; Aeries EB; Hirata R; Takahashi Y; Onodera T
    Sci Total Environ; 2023 May; 872():162062. PubMed ID: 36804973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.