BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28242455)

  • 1. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix.
    Li Q; Qu F; Han B; Wang C; Li H; Mauck RL; Han L
    Acta Biomater; 2017 May; 54():356-366. PubMed ID: 28242455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of maturation on the micromechanics of the meniscus extracellular matrix.
    Li Q; Wang C; Han B; Qu F; Qi H; Li CY; Mauck RL; Han L
    J Biomech; 2018 Apr; 72():252-257. PubMed ID: 29555076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy.
    McLeod MA; Wilusz RE; Guilak F
    J Biomech; 2013 Feb; 46(3):586-92. PubMed ID: 23062866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy.
    Orton K; Batchelor W; Ziebarth NM; Best TM; Travascio F; Jackson AR
    PLoS One; 2023; 18(1):e0280616. PubMed ID: 36662701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus.
    Wang C; Brisson BK; Terajima M; Li Q; Hoxha K; Han B; Goldberg AM; Sherry Liu X; Marcolongo MS; Enomoto-Iwamoto M; Yamauchi M; Volk SW; Han L
    Matrix Biol; 2020 Jan; 85-86():47-67. PubMed ID: 31655293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus.
    Abraham AC; Edwards CR; Odegard GM; Donahue TL
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2024-30. PubMed ID: 22098902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical properties of murine meniscus surface via AFM-based nanoindentation.
    Li Q; Doyran B; Gamer LW; Lu XL; Qin L; Ortiz C; Grodzinsky AJ; Rosen V; Han L
    J Biomech; 2015 Jun; 48(8):1364-70. PubMed ID: 25817332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus.
    Sanchez-Adams J; Wilusz RE; Guilak F
    J Orthop Res; 2013 Aug; 31(8):1218-25. PubMed ID: 23568545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes.
    Wu J; Xu J; Huang Y; Tang L; Hong Y
    Biomed Mater; 2021 Dec; 17(1):. PubMed ID: 34883474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy in the viscoelastic response of knee meniscus cartilage.
    Coluccino L; Peres C; Gottardi R; Bianchini P; Diaspro A; Ceseracciu L
    J Appl Biomater Funct Mater; 2017 Jan; 15(1):e77-e83. PubMed ID: 27647392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Apr; ():. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical remodeling of the extracellular matrix by invading tumors: anisotropy and heterogeneity.
    Naylor A; Zheng Y; Jiao Y; Sun B
    Soft Matter; 2022 Dec; 19(1):9-16. PubMed ID: 36503977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropy and inhomogeneity of permeability and fibrous network response in the pars intermedia of the human lateral meniscus.
    Berni M; Marchiori G; Cassiolas G; Grassi A; Zaffagnini S; Fini M; Lopomo NF; Maglio M
    Acta Biomater; 2021 Nov; 135():393-402. PubMed ID: 34411754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach.
    De Rosa M; Filippone G; Best TM; Jackson AR; Travascio F
    J Mech Behav Biomed Mater; 2022 Feb; 126():105073. PubMed ID: 34999488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine Meniscus Middle Zone Tissue: Measurement of Collagen Fibril Behavior During Compression.
    Sizeland KH; Wells HC; Kirby NM; Hawley A; Mudie ST; Ryan TM; Haverkamp RG
    Int J Nanomedicine; 2020; 15():5289-5298. PubMed ID: 32821095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy.
    Jorba I; Uriarte JJ; Campillo N; Farré R; Navajas D
    J Cell Physiol; 2017 Jan; 232(1):19-26. PubMed ID: 27163411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus.
    Kwok B; Chandrasekaran P; Wang C; He L; Mauck RL; Dyment NA; Koyama E; Han L
    Acta Biomater; 2023 Sep; 168():235-251. PubMed ID: 37414114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas.
    Brauchle E; Kasper J; Daum R; Schierbaum N; Falch C; Kirschniak A; Schäffer TE; Schenke-Layland K
    Matrix Biol; 2018 Aug; 68-69():180-193. PubMed ID: 29605717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the effect of glycosaminoglycan depletion on integrin interactions with collagen I fibrils in the native extracellular matrix environment.
    Roth J; Hoop CL; Williams JK; Hayes R; Baum J
    Protein Sci; 2023 Jan; 32(1):e4508. PubMed ID: 36369695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.
    Susilo ME; Roeder BA; Voytik-Harbin SL; Kokini K; Nauman EA
    Acta Biomater; 2010 Apr; 6(4):1471-86. PubMed ID: 19913642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.