These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28242478)

  • 1. Gynoecium formation: an intimate and complicated relationship.
    Moubayidin L; Østergaard L
    Curr Opin Genet Dev; 2017 Aug; 45():15-21. PubMed ID: 28242478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis.
    Girin T; Paicu T; Stephenson P; Fuentes S; Körner E; O'Brien M; Sorefan K; Wood TA; Balanzá V; Ferrándiz C; Smyth DR; Østergaard L
    Plant Cell; 2011 Oct; 23(10):3641-53. PubMed ID: 21990939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Female reproductive organ formation: A multitasking endeavor.
    Simonini S; Østergaard L
    Curr Top Dev Biol; 2019; 131():337-371. PubMed ID: 30612622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental cartography: coordination via hormonal and genetic interactions during gynoecium formation.
    Deb J; Bland HM; Østergaard L
    Curr Opin Plant Biol; 2018 Feb; 41():54-60. PubMed ID: 28961459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the FUL-SHP network in the evolution of fruit morphology and function.
    Ferrándiz C; Fourquin C
    J Exp Bot; 2014 Aug; 65(16):4505-13. PubMed ID: 24482369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique and overlapping functions for the transcriptional regulators
    Hagelthorn L; Monfared MM; Talo A; Harmon FG; Fletcher JC
    Plant Direct; 2023 May; 7(5):e496. PubMed ID: 37168319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormonal control of the development of the gynoecium.
    Marsch-Martínez N; de Folter S
    Curr Opin Plant Biol; 2016 Feb; 29():104-14. PubMed ID: 26799132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?
    Marsch-Martínez N; Reyes-Olalde JI; Ramos-Cruz D; Lozano-Sotomayor P; Zúñiga-Mayo VM; de Folter S
    Plant Signal Behav; 2012 Dec; 7(12):1698-701. PubMed ID: 23072997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis.
    Zúñiga-Mayo VM; Marsch-Martínez N; de Folter S
    Plant J; 2012 Jul; 71(2):314-26. PubMed ID: 22409594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular framework controlling style morphology in
    Simonini S; Stephenson P; Østergaard L
    Development; 2018 Mar; 145(5):. PubMed ID: 29440299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus).
    Aguado E; García A; Manzano S; Valenzuela JL; Cuevas J; Pinillos V; Jamilena M
    Plant Reprod; 2018 Dec; 31(4):411-426. PubMed ID: 30128916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juicy stories on female reproductive tissue development: coordinating the hormone flows.
    Grieneisen VA; Marée AF; Ostergaard L
    J Integr Plant Biol; 2013 Sep; 55(9):847-63. PubMed ID: 23869979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two orthogonal differentiation gradients locally coordinate fruit morphogenesis.
    Gómez-Felipe A; Branchini E; Wang B; Marconi M; Bertrand-Rakusová H; Stan T; Burkiewicz J; de Folter S; Routier-Kierzkowska AL; Wabnik K; Kierzkowski D
    Nat Commun; 2024 Apr; 15(1):2912. PubMed ID: 38575617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.
    Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR
    Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-floral Erection of Stalks Provides Insight into the Evolution of Fruit Orientation and Its Effects on Seed Dispersal.
    Niu Y; Zhou Z; Sha W; Sun H
    Sci Rep; 2016 Feb; 6():20146. PubMed ID: 26832830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning.
    Marsch-Martínez N; Ramos-Cruz D; Irepan Reyes-Olalde J; Lozano-Sotomayor P; Zúñiga-Mayo VM; de Folter S
    Plant J; 2012 Oct; 72(2):222-34. PubMed ID: 22640521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in seed size is structured by dispersal syndrome and cone morphology in conifers and other nonflowering seed plants.
    Leslie AB; Beaulieu JM; Mathews S
    New Phytol; 2017 Oct; 216(2):429-437. PubMed ID: 28185279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae.
    Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N
    Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction.
    Schmidt A; Schmid MW; Grossniklaus U
    Development; 2015 Jan; 142(2):229-41. PubMed ID: 25564620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. False paracarpy in Seemannaralia (Araliaceae): from bilocular ovary to unilocular fruit.
    Oskolski AA; Sokoloff DD; Van Wyk BE
    Ann Bot; 2010 Jul; 106(1):29-36. PubMed ID: 20462851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.