BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28242538)

  • 21. Impact of ultra-low emission retrofitting on partitioning and emission behavior of chromium in a Chinese coal-fired power plant.
    Tang Q; Chang L; He F; Miao C; Zheng L; Ma D; Wang R; Fu B
    Chemosphere; 2022 Sep; 302():134859. PubMed ID: 35533942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury emissions and partitioning from Indian coal-fired power plants.
    Agarwalla H; Senapati RN; Das TB
    J Environ Sci (China); 2021 Feb; 100():28-33. PubMed ID: 33279041
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Walencik-Łata A; Smołka-Danielowska D
    Environ Pollut; 2020 Dec; 267():115462. PubMed ID: 32891046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigations on fly-ash and soil samples in the environment of a coal-fired power plant.
    Glöbel B; Andres C
    Sci Total Environ; 1985 Oct; 45():63-7. PubMed ID: 4081767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Dec; 138():427-33. PubMed ID: 24661430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China.
    Qi L; Yuan Y
    J Hazard Mater; 2011 Aug; 192(1):222-5. PubMed ID: 21621327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.
    Vaasma T; Kaasik M; Loosaar J; Kiisk M; Tkaczyk AH
    J Environ Radioact; 2017 Nov; 178-179():232-244. PubMed ID: 28910626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic emission and distribution characteristics in the ultra-low emission coal-fired power plant.
    Han L; Zhao Y; Hao R
    Environ Sci Pollut Res Int; 2022 May; 29(24):36814-36823. PubMed ID: 35064494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity.
    Gür F; Yaprak G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1900-8. PubMed ID: 20981605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research on the electrostatic characteristic of coal-fired fly ash.
    Qi L; Yao Y; Han T; Li J
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7123-7131. PubMed ID: 30648236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine area in southern Brazil.
    Galhardi JA; García-Tenorio R; Díaz Francés I; Bonotto DM; Marcelli MP
    J Environ Radioact; 2017 Feb; 167():43-53. PubMed ID: 27876159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Distributions and environmental impacts of selenium in wastes of coal from a power plant].
    Xu WD; Zeng RS; Ye DN; Quero X
    Huan Jing Ke Xue; 2005 Mar; 26(2):64-8. PubMed ID: 16004301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excess of polonium-210 activity in the surface urban atmosphere. Part 2: origin of ²¹⁰Po excess.
    Długosz-Lisiecka M
    Environ Sci Process Impacts; 2015 Feb; 17(2):465-70. PubMed ID: 25567664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.
    Smolka-Danielowska D
    J Environ Radioact; 2010 Nov; 101(11):965-8. PubMed ID: 20713303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?
    Nelson AW; Eitrheim ES; Knight AW; May D; Wichman MD; Forbes TZ; Schultz MK
    J Environ Radioact; 2017 Feb; 167():211-221. PubMed ID: 27914777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of Condensable Fine Particle Size Distribution in Simulated Flue Gas by External Regulation for Growth Enhancement.
    Zheng C; Zheng H; Shen J; Gao W; Yang Z; Zhao Z; Wang Y; Zhang H; Gao X
    Environ Sci Technol; 2020 Apr; 54(7):3840-3848. PubMed ID: 32119780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of coal blending in electrostatic precipitation efficiency-Inner Mongolia, China.
    Qi L; Xu J; Yao Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31421-31426. PubMed ID: 30196465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.