These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28242561)

  • 81. L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I.
    Pineau B; Layoune O; Danon A; De Paepe R
    J Biol Chem; 2008 Nov; 283(47):32500-5. PubMed ID: 18799460
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.
    Liu F; Wang L; Gu L; Zhao W; Su H; Cheng X
    Food Chem; 2015 Dec; 188():399-405. PubMed ID: 26041210
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp.
    Yang XY; Xie JX; Wang FF; Zhong J; Liu YZ; Li GH; Peng SA
    J Plant Physiol; 2011 Dec; 168(18):2196-205. PubMed ID: 21925761
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The biosynthetic pathway of vitamin C in higher plants.
    Wheeler GL; Jones MA; Smirnoff N
    Nature; 1998 May; 393(6683):365-9. PubMed ID: 9620799
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Activity and gene expression analysis of the NADP-dependent isocitrate dehydrogenase (NADP-ICDH) through pepper fruit ripening and its modulation by nitric oxide (NO). Molecular characterization of the peroxisomal isozyme.
    Muñoz-Vargas MA; González-Gordo S; Taboada J; Palma JM; Corpas FJ
    Plant Sci; 2024 Dec; 349():112269. PubMed ID: 39313003
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Light qualities and dose influence ascorbate pool size in detached oat leaves.
    Mastropasqua L; Borraccino G; Bianco L; Paciolla C
    Plant Sci; 2012 Feb; 183():57-64. PubMed ID: 22195578
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra).
    Badejo AA; Fujikawa Y; Esaka M
    J Plant Physiol; 2009 Apr; 166(6):652-60. PubMed ID: 18952318
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum.
    Lee SC; Hwang BK
    Planta; 2003 Jan; 216(3):387-96. PubMed ID: 12520329
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Sweet Pepper (
    Rodríguez-Ruiz M; González-Gordo S; Cañas A; Campos MJ; Paradela A; Corpas FJ; Palma JM
    Antioxidants (Basel); 2019 Sep; 8(9):. PubMed ID: 31487955
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Ascorbic acid in plants: biosynthesis and function.
    Smirnoff N; Wheeler GL
    Crit Rev Biochem Mol Biol; 2000; 35(4):291-314. PubMed ID: 11005203
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Molecular characterization of tobacco mitochondrial L-galactono-gamma-lactone dehydrogenase and its expression in Escherichia coli.
    Yabuta Y; Yoshimura K; Takeda T; Shigeoka S
    Plant Cell Physiol; 2000 Jun; 41(6):666-75. PubMed ID: 10945335
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Dynamics of the chili pepper transcriptome during fruit development.
    Martínez-López LA; Ochoa-Alejo N; Martínez O
    BMC Genomics; 2014 Feb; 15():143. PubMed ID: 24555715
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response.
    Choi HW; Lee DH; Hwang BK
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1389-400. PubMed ID: 19810808
    [TBL] [Abstract][Full Text] [Related]  

  • 94. [Relationship between ascorbic acid accumulation and related enzyme activities in fruit of Rosa roxburghii Tratt].
    An HM; Chen LG; Fan WG; Liu QL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):431-6. PubMed ID: 16121016
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.).
    Mayorga-Gómez A; Nambeesan SU
    BMC Plant Biol; 2020 May; 20(1):241. PubMed ID: 32466743
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum.
    Römer S; Hugueney P; Bouvier F; Camara B; Kuntz M
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1414-21. PubMed ID: 8250898
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene.
    Lee S; Chung EJ; Joung YH; Choi D
    Funct Integr Genomics; 2010 Mar; 10(1):135-46. PubMed ID: 19756789
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits.
    Tsaniklidis G; Delis C; Nikoloudakis N; Katinakis P; Aivalakis G
    Plant Physiol Biochem; 2014 Nov; 84():149-157. PubMed ID: 25282013
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ascorbate metabolism in harvested broccoli.
    Nishikawa F; Kato M; Hyodo H; Ikoma Y; Sugiura M; Yano M
    J Exp Bot; 2003 Nov; 54(392):2439-48. PubMed ID: 14512388
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Physiological and metabolomic analysis reveals maturity stage-dependent nitrogen regulation of vitamin C content in pepper fruit.
    Zhang L; Zhang F; Wang Y; Ma X; Shen Y; Wang X; Yang H; Zhang W; Lakshmanan P; Hu Y; Xu J; Chen X; Deng Y
    Front Plant Sci; 2022; 13():1049785. PubMed ID: 36714702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.