BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28242601)

  • 1. A genetic study of the regeneration capacity of embryonic callus from the maize immature embryo culture.
    Zhang XL; Long Y; Ge F; Guan ZR; Zhang XX; Wang YL; Shen Y; Pan GT
    Yi Chuan; 2017 Feb; 39(2):143-155. PubMed ID: 28242601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the relationship between inheritance and immature embryo culturing capacity of maize inbreds].
    Ma L; Sun QQ; Zhou YL; Wu CL; Zhang CQ
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2007 Apr; 40(2):164-72. PubMed ID: 17580670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies.
    Ma L; Liu M; Yan Y; Qing C; Zhang X; Zhang Y; Long Y; Wang L; Pan L; Zou C; Li Z; Wang Y; Peng H; Pan G; Jiang Z; Shen Y
    Front Plant Sci; 2018; 9():561. PubMed ID: 29755499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of maize inbred lines with high regeneration and susceptibility to Agrobacterium tumifacien.
    Wang Y; Fu S; Wen Y; Zhang Z; Xia Y; Liu Y; Rong T; Pan G
    J Genet Genomics; 2007 Aug; 34(8):749-55. PubMed ID: 17707219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection of Embryonic Callus with
    Du D; Jin R; Guo J; Zhang F
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoot meristem: an ideal explant for Zea mays L. transformation.
    Sairam RV; Parani M; Franklin G; Lifeng Z; Smith B; MacDougall J; Wilber C; Sheikhi H; Kashikar N; Meeker K; Al-Abed D; Berry K; Vierling R; Goldman SL
    Genome; 2003 Apr; 46(2):323-9. PubMed ID: 12723048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation.
    Zhang X; Wang Y; Yan Y; Peng H; Long Y; Zhang Y; Jiang Z; Liu P; Zou C; Peng H; Pan G; Shen Y
    BMC Genomics; 2019 Feb; 20(1):159. PubMed ID: 30813896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced dedifferentiation of barley (Hordeum vulgare L.) embryonic cells and its relationship with agronomic traits.
    Naseri R; Cheghamirza K; Zarei L; Saroei E
    Cell Mol Biol (Noisy-le-grand); 2017 Oct; 63(10):11-19. PubMed ID: 29096740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation.
    Liu H; Ma L; Yang X; Zhang L; Zeng X; Xie S; Peng H; Gao S; Lin H; Pan G; Wu Y; Shen Y
    BMC Plant Biol; 2017 Jun; 17(1):105. PubMed ID: 28619030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic transformation using maize immature zygotic embryos.
    Frame B; Main M; Schick R; Wang K
    Methods Mol Biol; 2011; 710():327-41. PubMed ID: 21207278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts.
    Frame BR; McMurray JM; Fonger TM; Main ML; Taylor KW; Torney FJ; Paz MM; Wang K
    Plant Cell Rep; 2006 Oct; 25(10):1024-34. PubMed ID: 16710703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of transcription factors involved in maize embryonic callus formation.
    Ge F; Luo X; Huang X; Zhang Y; He X; Liu M; Lin H; Peng H; Li L; Zhang Z; Pan G; Shen Y
    Physiol Plant; 2016 Dec; 158(4):452-462. PubMed ID: 27194582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize.
    Wang Y; He S; Long Y; Zhang X; Zhang X; Hu H; Li Z; Hou F; Ge F; Gao S; Pan G; Ma L; Shen Y
    Plant J; 2022 Feb; 109(4):980-991. PubMed ID: 34822726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Split-seed: a new tool for maize researchers.
    Al-Abed D; Rudrabhatla S; Talla R; Goldman S
    Planta; 2006 May; 223(6):1355-60. PubMed ID: 16489455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous small interfering RNAs associated with maize embryonic callus formation.
    Ge F; Huang X; Hu H; Zhang Y; Li Z; Zou C; Peng H; Li L; Gao S; Pan G; Shen Y
    PLoS One; 2017; 12(7):e0180567. PubMed ID: 28672003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize somatic embryogenesis: recent features to improve plant regeneration.
    Garrocho-Villegas V; de Jesús-Olivera MT; Quintanar ES
    Methods Mol Biol; 2012; 877():173-82. PubMed ID: 22610628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A leaf-based regeneration and transformation system for maize (Zea mays L.).
    Ahmadabadi M; Ruf S; Bock R
    Transgenic Res; 2007 Aug; 16(4):437-48. PubMed ID: 17103238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of EF1gamma from calli regenerating SSH library in Maize (Zea mays).
    Xia YL; Ding J; Zhang ZM; Rong TZ; Shi LY; Pan GT
    Genetika; 2007 Dec; 43(12):1647-50. PubMed ID: 18592691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance of plant regeneration from maize (Zea mays L.) shoot meristem cultures derived from germinated seeds and the identification of associated RAPD and SSR markers.
    Li W; Sun G; Liu J; Masilamany P; Taylor JH; Yan W; Kasha KJ; Pauls KP
    Theor Appl Genet; 2004 Feb; 108(4):681-7. PubMed ID: 14586503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration capacity of mature embryo-derived callus in barley ( Hordeum vulgare L.).
    Gürel F; Karakaş O; Albayrak G; Ari S
    Acta Biol Hung; 2009 Sep; 60(3):309-19. PubMed ID: 19700390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.