These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28242630)

  • 21. Potentiation of the cystic fibrosis transmembrane conductance regulator by VX-770 involves stabilization of the pre-hydrolytic, O
    Langron E; Prins S; Vergani P
    Br J Pharmacol; 2018 Oct; 175(20):3990-4002. PubMed ID: 30107029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC; Dousmanis AG; Nairn AC
    Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; Song B; McCarty NA
    J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFTR gating II: Effects of nucleotide binding on the stability of open states.
    Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.
    Szollosi A; Muallem DR; Csanády L; Vergani P
    J Gen Physiol; 2011 Jun; 137(6):549-62. PubMed ID: 21576373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel.
    Qian F; Li T; Yang F; Liu L
    Exp Physiol; 2014 Dec; 99(12):1611-23. PubMed ID: 25326525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
    Wang W; Linsdell P
    Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of CFTR inhibition by a thiazolidinone derivative.
    Kopeikin Z; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2010 Dec; 136(6):659-71. PubMed ID: 21078867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.
    Xie C; Cao X; Chen X; Wang D; Zhang WK; Sun Y; Hu W; Zhou Z; Wang Y; Huang P
    FASEB J; 2016 Apr; 30(4):1579-89. PubMed ID: 26683699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore.
    Krasilnikov OV; Sabirov RZ; Okada Y
    J Physiol Sci; 2011 Jul; 61(4):267-78. PubMed ID: 21461971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of CFTR gating by permeant ions.
    Yeh HI; Yeh JT; Hwang TC
    J Gen Physiol; 2015 Jan; 145(1):47-60. PubMed ID: 25512598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.