These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa. Elfarash A; Dingemans J; Ye L; Hassan AA; Craggs M; Reimmann C; Thomas MS; Cornelis P Microbiology (Reading); 2014 Feb; 160(Pt 2):261-269. PubMed ID: 24217175 [TBL] [Abstract][Full Text] [Related]
3. A novel transposon-like structure carries the genes for pyocin AP41, a Pseudomonas aeruginosa bacteriocin with a DNase domain homology to E2 group colicins. Sano Y; Kageyama M Mol Gen Genet; 1993 Feb; 237(1-2):161-70. PubMed ID: 8384291 [TBL] [Abstract][Full Text] [Related]
4. Identification and functional analysis of a bacteriocin, pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. Dingemans J; Ghequire MG; Craggs M; De Mot R; Cornelis P Microbiologyopen; 2016 Jun; 5(3):413-23. PubMed ID: 26860427 [TBL] [Abstract][Full Text] [Related]
5. Genetic characterization of a novel metallo-beta-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. Toleman MA; Biedenbach D; Bennett D; Jones RN; Walsh TR J Antimicrob Chemother; 2003 Oct; 52(4):583-90. PubMed ID: 12951335 [TBL] [Abstract][Full Text] [Related]
6. Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. Hishinuma T; Tada T; Kuwahara-Arai K; Yamamoto N; Shimojima M; Kirikae T PLoS One; 2018; 13(11):e0207134. PubMed ID: 30452435 [TBL] [Abstract][Full Text] [Related]
7. Clonal Dissemination of Pseudomonas aeruginosa Sequence Type 235 Isolates Carrying blaIMP-6 and Emergence of blaGES-24 and blaIMP-10 on Novel Genomic Islands PAGI-15 and -16 in South Korea. Hong JS; Yoon EJ; Lee H; Jeong SH; Lee K Antimicrob Agents Chemother; 2016 Dec; 60(12):7216-7223. PubMed ID: 27671068 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas aeruginosa Clinical Isolates in Nepal Coproducing Metallo-β-Lactamases and 16S rRNA Methyltransferases. Tada T; Shimada K; Satou K; Hirano T; Pokhrel BM; Sherchand JB; Kirikae T Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28696242 [TBL] [Abstract][Full Text] [Related]
9. Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in Pseudomonas aeruginosa in Turkey. Iraz M; Duzgun AO; Cicek AC; Bonnin RA; Ceylan A; Saral A; Nordmann P; Sandalli C Diagn Microbiol Infect Dis; 2014 Mar; 78(3):292-4. PubMed ID: 24428980 [TBL] [Abstract][Full Text] [Related]
10. A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Ghequire MGK; Öztürk B Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980560 [TBL] [Abstract][Full Text] [Related]
11. Tn6249, a new Tn6162 transposon derivative carrying a double-integron platform and involved with acquisition of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. Di Pilato V; Pollini S; Rossolini GM Antimicrob Agents Chemother; 2015 Mar; 59(3):1583-7. PubMed ID: 25547348 [TBL] [Abstract][Full Text] [Related]
12. Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. Denayer S; Matthijs S; Cornelis P J Bacteriol; 2007 Nov; 189(21):7663-8. PubMed ID: 17720787 [TBL] [Abstract][Full Text] [Related]
13. [Analysis of the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa]. Liu Y; Deng Q; Yu Y; Cao X; Xu Q; Wan L Zhonghua Shao Shang Za Zhi; 2014 Feb; 30(1):15-20. PubMed ID: 24684984 [TBL] [Abstract][Full Text] [Related]
14. Molecular epidemiology of clinical Pseudomonas aeruginosa isolates carrying IMP-1 metallo-beta-lactamase gene in a University Hospital in Turkey. Ozgumus OB; Caylan R; Tosun I; Sandalli C; Aydin K; Koksal I Microb Drug Resist; 2007; 13(3):191-8. PubMed ID: 17949306 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the pJB12 Plasmid from Pseudomonas aeruginosa Reveals Tn Botelho J; Grosso F; Peixe L Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28193652 [TBL] [Abstract][Full Text] [Related]
16. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Neyestanaki DK; Mirsalehian A; Rezagholizadeh F; Jabalameli F; Taherikalani M; Emaneini M Burns; 2014 Dec; 40(8):1556-61. PubMed ID: 24767143 [TBL] [Abstract][Full Text] [Related]
17. Metallo-beta-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. Juan C; Zamorano L; Mena A; Albertí S; Pérez JL; Oliver A J Antimicrob Chemother; 2010 Mar; 65(3):474-8. PubMed ID: 20071364 [TBL] [Abstract][Full Text] [Related]
18. A predicted immunity protein confers resistance to pyocin S5 in a sensitive strain of Pseudomonas aeruginosa. Rasouliha BH; Ling H; Ho CL; Chang MW Chembiochem; 2013 Dec; 14(18):2444-6. PubMed ID: 24222552 [No Abstract] [Full Text] [Related]
19. Molecular Structure and Functional Analysis of Pyocin S8 from Pseudomonas aeruginosa Reveals the Essential Requirement of a Glutamate Residue in the H-N-H Motif for DNase Activity. Turano H; Gomes F; Domingos RM; Degenhardt MFS; Oliveira CLP; Garratt RC; Lincopan N; Netto LES J Bacteriol; 2020 Oct; 202(21):. PubMed ID: 32817098 [TBL] [Abstract][Full Text] [Related]
20. The pyocins of Pseudomonas aeruginosa. Michel-Briand Y; Baysse C Biochimie; 2002; 84(5-6):499-510. PubMed ID: 12423794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]