These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28242871)

  • 1. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242.
    Ranganathan M; DeMartinis N; Huguenel B; Gaudreault F; Bednar MM; Shaffer CL; Gupta S; Cahill J; Sherif MA; Mancuso J; Zumpano L; D'Souza DC
    Mol Psychiatry; 2017 Nov; 22(11):1633-1640. PubMed ID: 28242871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction.
    Roberts BM; Holden DE; Shaffer CL; Seymour PA; Menniti FS; Schmidt CJ; Williams GV; Castner SA
    Behav Brain Res; 2010 Sep; 212(1):41-8. PubMed ID: 20347881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cognitive impairments associated with NMDA receptor blockade in humans.
    Rowland LM; Astur RS; Jung RE; Bustillo JR; Lauriello J; Yeo RA
    Neuropsychopharmacology; 2005 Mar; 30(3):633-9. PubMed ID: 15647751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers.
    Parwani A; Weiler MA; Blaxton TA; Warfel D; Hardin M; Frey K; Lahti AC
    Psychopharmacology (Berl); 2005 Dec; 183(3):265-74. PubMed ID: 16220331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers.
    Adler CM; Goldberg TE; Malhotra AK; Pickar D; Breier A
    Biol Psychiatry; 1998 Jun; 43(11):811-6. PubMed ID: 9611670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.
    Anand A; Charney DS; Oren DA; Berman RM; Hu XS; Cappiello A; Krystal JH
    Arch Gen Psychiatry; 2000 Mar; 57(3):270-6. PubMed ID: 10711913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of entorhinal cortex and hippocampal subfields α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors enhanced learning and memory of rats following administration of Centella asiatica.
    Wong JH; Muthuraju S; Reza F; Senik MH; Zhang J; Mohd Yusuf Yeo NAB; Chuang HG; Jaafar H; Yusof SR; Mohamad H; Tengku Muhammad TS; Ismail NH; Husin SS; Abdullah JM
    Biomed Pharmacother; 2019 Feb; 110():168-180. PubMed ID: 30469081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia.
    D'Souza DC; Ahn K; Bhakta S; Elander J; Singh N; Nadim H; Jatlow P; Suckow RF; Pittman B; Ranganathan M
    Biol Psychiatry; 2012 Nov; 72(9):785-94. PubMed ID: 22717030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
    Krystal JH; Karper LP; Seibyl JP; Freeman GK; Delaney R; Bremner JD; Heninger GR; Bowers MB; Charney DS
    Arch Gen Psychiatry; 1994 Mar; 51(3):199-214. PubMed ID: 8122957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia.
    Umbricht D; Schmid L; Koller R; Vollenweider FX; Hell D; Javitt DC
    Arch Gen Psychiatry; 2000 Dec; 57(12):1139-47. PubMed ID: 11115327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Augmenting N-Methyl-D-Aspartate Receptor Signaling on Working Memory and Experience-Dependent Plasticity in Schizophrenia: An Exploratory Study Using Acute d-cycloserine.
    Forsyth JK; Bachman P; Mathalon DH; Roach BJ; Ye E; Asarnow RF
    Schizophr Bull; 2017 Sep; 43(5):1123-1133. PubMed ID: 28338977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574.
    Shaffer CL; Hurst RS; Scialis RJ; Osgood SM; Bryce DK; Hoffmann WE; Lazzaro JT; Hanks AN; Lotarski S; Weber ML; Liu J; Menniti FS; Schmidt CJ; Hajós M
    J Pharmacol Exp Ther; 2013 Oct; 347(1):212-24. PubMed ID: 23899905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects.
    Krystal JH; Abi-Saab W; Perry E; D'Souza DC; Liu N; Gueorguieva R; McDougall L; Hunsberger T; Belger A; Levine L; Breier A
    Psychopharmacology (Berl); 2005 Apr; 179(1):303-9. PubMed ID: 15309376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discovery and characterization of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor potentiator N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242).
    Shaffer CL; Patel NC; Schwarz J; Scialis RJ; Wei Y; Hou XJ; Xie L; Karki K; Bryce DK; Osgood SM; Hoffmann WE; Lazzaro JT; Chang C; McGinnis DF; Lotarski SM; Liu J; Obach RS; Weber ML; Chen L; Zasadny KR; Seymour PA; Schmidt CJ; Hajós M; Hurst RS; Pandit J; O'Donnell CJ
    J Med Chem; 2015 May; 58(10):4291-308. PubMed ID: 25905800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtle effects of ketamine on memory when administered following stimulus presentation.
    LaPorte DJ; Blaxton TA; Michaelidis T; Robertson DU; Weiler MA; Tamminga CA; Lahti AC
    Psychopharmacology (Berl); 2005 Jul; 180(3):385-90. PubMed ID: 15719220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-Related Target Occupancy and Effects on Circuitry, Behavior, and Neuroplasticity of the Glycine Transporter-1 Inhibitor PF-03463275 in Healthy and Schizophrenia Subjects.
    D'Souza DC; Carson RE; Driesen N; Johannesen J; Ranganathan M; Krystal JH;
    Biol Psychiatry; 2018 Sep; 84(6):413-421. PubMed ID: 29499855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task.
    Ma L; Skoblenick K; Johnston K; Everling S
    J Neurosci; 2018 Mar; 38(10):2482-2494. PubMed ID: 29437929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis.
    Newcomer JW; Farber NB; Jevtovic-Todorovic V; Selke G; Melson AK; Hershey T; Craft S; Olney JW
    Neuropsychopharmacology; 1999 Feb; 20(2):106-18. PubMed ID: 9885791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does increasing the ratio of AMPA-to-NMDA receptor mediated neurotransmission engender antidepressant action? Studies in the mouse forced swim and tail suspension tests.
    Andreasen JT; Gynther M; Rygaard A; Bøgelund T; Nielsen SD; Clausen RP; Mogensen J; Pickering DS
    Neurosci Lett; 2013 Jun; 546():6-10. PubMed ID: 23643996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers.
    Malhotra AK; Pinals DA; Weingartner H; Sirocco K; Missar CD; Pickar D; Breier A
    Neuropsychopharmacology; 1996 May; 14(5):301-7. PubMed ID: 8703299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.